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If you encounter any problem, please share it with us via the form https://forms.gle/52pCHhbKofi3DvMP7.

1 Quick overview of Magma

1.1 What is Magma?

Magma is a computer algebra system for computations in algebra, number theory, and geometry, as described
in [3]. We strive to provide:

• a mathematically rigorous environment, with

• highly efficient algorithms and implementations.

Magma consists of a large C kernel to achieve efficiency, and an ever increasing package of library functions
programmed in the Magma language for higher level functions.

https://magma.maths.usyd.edu.au/magma/handbook/

1.2 The Magma model

The Magma model is based on concepts from category theory.

• Every object belongs to a (unique, extended) category, a class of objects belonging to a variety that
share the same representation.

> a := [1];

> Category(a);

SeqEnum

> ExtendedCategory(a);

SeqEnum[RngIntElt]

• Every object has a (unique) parent structure, describing the mathematical context in which it is
viewed.

> Parent(a);

Set of sequences over Integer Ring

> Parent(a[1]);

Integer Ring

• Univariate and multivariate polynomial rings form the categories RngUPol and RngMPol (which lie in the
variety Rng). Univariate polynomials over the integers form an extended category RngUPol[RngInt].
The parent of a univariate polynomial is its polynomial ring.
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> k := Rationals();

> kt<t> := PolynomialRing(k);

> kt;

Univariate Polynomial Ring in t over Rational Field

> Category(kt);

RngUPol

> ISA(RngUPol, Rng);

true

> ExtendedCategory(kt);

RngUPol[FldRat]

> kx<[x]> := PolynomialRing(k, 10);

> kx;

Polynomial ring of rank 10 over Rational Field

Order: Lexicographical

Variables: x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10]

> Category(kx);

RngMPol

> ISA(RngMPol, Rng);

true
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2 First Steps

This section is intended for applications in Algebraic Geometry. For a more comprehensive set of examples,
one may refer the Magma Handbook or the excellent guide [1].

2.1 Schemes

In this example we write down a monomial scheme and analyze the basic properties of its components. We
first construct A3

Q, the affine 3-space over the rationals.

> A<x,y,z> := AffineSpace(Rationals(),3);

> A;

Affine Space of dimension 3 over Rational Field

Variables: x, y, z

Define the subscheme of A3
Q defined by a sequence of polynomials X = Spec k[x, y, z]/(xy2, x4z).

> X := Scheme(A,[x*y^2,x^4*z]);

> X;

Scheme over Rational Field defined by

x*y^2,

x^4*z

We find that dimX = 2, it is nonreduced, and find its primary components.

> Dimension(X);

2
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> IsReduced(X);

false

> Xprim := PrimaryComponents(X);

Xprim is a sequence of components; to access elements, use brackets.

> Xprim[1];

Scheme over Rational Field defined by

x

> Xred, f := ReducedSubscheme(X);

> Xred;

Scheme over Rational Field defined by

x*y,

x*z

Comparison in Magma is eq.

> AmbientSpace(X) eq A;

true

> I := DefiningIdeal(X);

> I;

Ideal of Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: x, y, z

Homogeneous, Dimension 2, Non-radical, Non-primary, Non-prime

Basis:

[

x*y^2,

x^4*z

]

The ring containing I.

> R := Generic(I);

> R;

Polynomial ring of rank 3 over Rational Field

Order: Lexicographical

Variables: x, y, z

Define a subscheme of projective space.

> Proj(R/I);

Scheme over Rational Field defined by

x*y^2,

x^4*z

Projective Space of dimension 2 over Rational Field

Variables: x, y, z

2.2 Groebner Bases

We compute the Groebner basis of the ”Cyclic-6” ideal with respect to the lexicographical order.

> P<x,y,z,t,u,v> := PolynomialRing(Rationals(), 6);
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> sigma := hom<P -> P | [y,z,t,u,v,x]>;

> sigma(x);

y

> gens := [ &+[ (sigma^i)(m) : i in [1..6] ] :

> m in [x,x*y,x*y*z,x*y*z*t,x*y*z*t*u] ] cat [x*y*z*t*u*v - 1];

> I := ideal<P | gens>;

Compute a Groebner basis.

> time gb := GroebnerBasis(I);

Time: 0.070

> #gb;

17

Now we can compute dimension.

> Dimension(I);

0 []

Since the ideal is zero-dimensional and the monomial order is lex, the last polynomial in the lex Groebner
basis is univariate.

> gb[17];

v^48 - 2554*v^42 - 399710*v^36 - 499722*v^30 + 499722*v^18 + 399710*v^12 + 2554*v^6 - 1

> time Factorization(gb[17]);

[

<v - 1, 1>,

<v + 1, 1>,

<v^2 + 1, 1>,

<v^2 - 4*v + 1, 1>,

<v^2 - v + 1, 1>,

<v^2 + v + 1, 1>,

<v^2 + 4*v + 1, 1>,

<v^4 - v^2 + 1, 1>,

<v^4 - 4*v^3 + 15*v^2 - 4*v + 1, 1>,

<v^4 + 4*v^3 + 15*v^2 + 4*v + 1, 1>,

<v^8 + 4*v^6 - 6*v^4 + 4*v^2 + 1, 1>,

<v^8 - 6*v^7 + 16*v^6 - 24*v^5 + 27*v^4 - 24*v^3 + 16*v^2 - 6*v + 1, 1>,

<v^8 + 6*v^7 + 16*v^6 + 24*v^5 + 27*v^4 + 24*v^3 + 16*v^2 + 6*v + 1, 1>

]

Time: 0.000

More generally, we can write a short function for creating the cyclic n-ideal.

function CyclicNIdeal(n);

P := PolynomialRing(Rationals(), n);

sigma := hom<P -> P | [P.i : i in [2..n] cat [1]]>;

monoms := [P.1];

for i := 2 to n do

Append(~monoms, monoms[i-1]*P.i);

end for;

gens := [ &+[ (sigma^i)(m) : i in [1..n] ] : m in monoms[1..n-1] ]

cat [ monoms[n] - 1];

return ideal<P | gens>;

end function;
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We can instruct the Faugere algorithm to be chatty so we can watch the progression of the computation.

> SetVerbose("Groebner", 1);

> time gb := GroebnerBasis(CyclicNIdeal(7));

Homogeneous weights search

Number of variables: 7, nullity: 1

Exact search time: 0.000

Modular Groebner Basis over Q

Rank: 7

Order: Graded Reverse Lexicographical

Module col limit: -1

Pairs limit: -1

Degree limit: -1

Step 1 (try 1), basep: 1, nr: 1, 0.000

GB time: 0.289[r]

Is zero dimensional: 1

Step 2 (try 2), basep: 2, nr: 1, 0.290

GB time: 0.220

Step 3 (try 3), basep: 3, nr: 1, 0.560

GB time: 0.067[r]

Final GB length: 209

Total number of steps: 3

Total modular partial GB time: 0.650

Switch to standard F4

********************

FAUGERE F4 ALGORITHM

...

New polynomial 34, leading monomial: $.1, 7.558[r]

Total FGLM time: 7.580

Time: 8.980

...

Magma can work with many different kinds of term orders and ground rings.

> Z := IntegerRing();

> P<a,b,c> := PolynomialRing(Z, 3, "weight", [4,2,1, 1,2,3, 1,1,1]);

2.3 Resolution graph of a curve singularity

Let C = SpecQ[x, y]/((x2 − y3)2 + xy6) be a singular affine curve.

> A<x,y> := AffineSpace(Rationals(),2);

> C := Curve(A,(x^2 - y^3)^2 + x*y^6);

> C;

Curve over Rational Field defined by

x^4 - 2*x^2*y^3 + x*y^6 + y^6

The interesting singularity is at the origin. We calculate its resolution graph and display it.

> g := ResolutionGraph(C,Origin(A));

> g;

The resolution graph on the Digraph
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Vertex Neighbours

1 ([ -3, 4, 1, 0 ]) 2 ;

2 ([ -2, 12, 4, 0 ]) 3 4 ;

3 ([ -2, 6, 2, 0 ]) ;

4 ([ -3, 14, 5, 0 ]) 5 ;

5 ([ -1, 30, 12, 1 ]) 6 ;

6 ([ -2, 15, 6, 0 ]) ;

The resulting graph has 6 vertices. So the transverse resolution of this singularity is achieved by 6 blowups.
In brackets, each vertex has a label of the form [s,m, k, t], where:

• s is the self-intersection;

• m is the multiplicity (dependent on context);

• k is the canonical multiplicity;

• t is the number of transverse intersections at v.

> Genus(C);

0

3 Helpful tips

This section is an adaptation of [2].
Some useful links: Documentation, general examples.

3.1 How do I get help?

• To access the documentation of a function, write FunctionName;.

• You can write the first letter of a function and tab complete twice to get a list of possible functions.

• You can try ListSignatures(Type(YourElement)); to list all Magma functions that accept
YourElement as input.

• If there are multiple functions with name FunctionName, you can access the ones relevant to
YourElement by typing the following commmand -
ListSignatures(FunctionName, Type(YourElement));.

3.2 Warning!

• Every command must end with a semicolon. Nothing happens until Magma sees the semicolon.

• Magma is fussy about types (curves and schemes are different types, for example) and elements may
need to be explicitly coerced to have the type you want. To change the scheme C to a curve, use
Curve(C). Similarly, to change a scheme S to a surface, use Surface(Ambient(S), Ideal(S)).

• When defining a map between schemes f : X → Y using polynomials p1, . . . , pn, Magma would create
a rational map even if the polynomials have a base scheme over which they all vanish, i.e. V =
V (p1, . . . , pn) is nonempty. You may check whether this is an honest morphism of schemes using
IsMorphism.
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3.3 Other useful tips

• To load a file, use

> load "fileAddress";

• To kill a process, use control + c. To kill Magma, do this twice within a second.

• To ignore >, use the command SetIgnorePrompt(true);. This is very helpful when you are copying
code from, let’s say, worksheets.

• $1 denotes the last printed result (you can also call $2 and $3). More dollar values can be made
available by using, for example, SetPreviousSize(10);.

• When you are debugging functions, you can SetDebugOnError(true);. This will give you access to the
”inside” of your function, up to where Magma got stuck. You print things by p whateverYouWant. Use
q to quit back to the Magma terminal. You can see all the functions that were used in your computation
using bt (shows you the ”frames”). Go to a specific frame by writing f theNumberYouWant. Warning:
do not use ;.

• In your home directory you can create a file .magmarc, if does not exist, to have certain commands to
run on start. For example, you can set QQ := Rationals();

• Use control + e to get to the last character of a line in the terminal. Use control + a for the first
one. Do control + k to delete the line. You can also find other combinations here. If you are used
to editing with vi, the command SetViMode(true); could be useful.

• Use %P to print the Magma input so far, or %p to do the same with line numbers shown.

• You can search only for signatures without inheritance:

ListSignatures(Srfc : Isa:=false);. Moreover, you can also just look for functions where your
type is an argument or a return values (very useful when you try to find a function producing the type
that another function needs. . . ):

ListSignatures(Crv : Search:="ReturnValues", Isa:=false);.

4 Scavenger Hunt

We will find a positive integer n.

1. Let E be the elliptic curve over Q given by the Weierstrass equation y2+y = x3−x2. Find all rational
points on E. Let n1 = #E(Q).

2. Let S ⊆ P4 be the surface defined by
∑4

i=0 xi = 0 =
∑4

i=0 x
3
i . Compute n2, the number of rational

points on S where 3 coplanar lines of the surface meet.

[The command EckardtPoints may be useful. Note that it only takes as input Del Pezzo surfaces, so
it might be useful to use IsDelPezzo. For more information on Del Pezzo surfaces, refer to https:

//magma.maths.usyd.edu.au/magma/handbook/text/1439 ]

3. Let X1, X2 ⊆ P4
Q be the 2-planes defined by the following equations.

X1 : 6x1 − 8x3 + 10x4 − 5x5 = 2x1 + 10x2 + 8x3 + 8x4 + x5 = 0

X2 : 5x1 + 9x2 + x4 = 5x1 + 5x2 + 4x3 + 8x5 = 0

Let X = X1 ∪X2. Verify that X is not Cohen-Macaulay. Find n3 = h1(X,OX(−10)).

[The commands IsCohenMacaulay, StructureSheaf and CohomologyDimension could be useful.]

In fact, h1(X,OX(−d)) > 0 for all d > 0, showing that X does not have a dualizing sheaf.
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4. Let C be the hyperelliptic curve y2 = (x2−1)(x2−4)(x2−9), and let φ5 : C → P8 be its embedding into
projective space by the complete linear series of degree 5. Compute the Betti number n4 = β6,8(φ5(C)).

[Note that BettiNumber takes as input a module. One may use QuotientModule(Ideal(X)) to get a
module corresponding to a scheme X.]

Compute n =
∑4

i=1 ni to get your answer.

4.1 Bonus

5. Let Fn = P(OP1 ⊕ OP1(n)) be the n-th Hirzebruch surface.

(a) Create Fn via HirzebruchSurface as a toric variety (the type is TorVar)

(b) Embed it into projective space. For example, by finding an ample line bundle using IsProjective,
and take its sections using RiemannRochBasis.

(c) Find a divisor C on F3 with self-intersection C2 = 3. [There are two natural projections Fn → P1

induced by O and O(n). Try to construct them explicitly using pi:=map<Fn->P1 ... >, and take
fibers over a point by using pt@@pi.]

(d) Compute n5 = h0(C,OC), for example, via DimensionOfGlobalSections.

[You might need to find how to convert a divisor into a sheaf, as DimensionOfGlobalSections
take as input a sheaf (type ShfCoh).]

6. Consider the following K3 surface, over given as a degree 2 cover of P2

Sλ : w
2 = x6 + y6 + z6 − λ(xyz)2

(a) We say that Sλ has a tritangent line if there is a line in the plane that splits in Sλ. This
condition is equivalent to the line l meeting the ramification sextic with even multiplicity at each
intersection point. Find the the two λ ∈ Q for which Sλ has geometric tritagent lines, but no
rational tritangent lines.

[The command TriTangentLines could be your friend, but its source code, which you can find
the location by typing TriTangentLines:Maximal;, could be better friend if you don’t want to
do a brute force search. The section “Degree 2 K3 surfaces” of the handbook might be useful
https://magma.maths.usyd.edu.au/magma/handbook/text/1440 ]

(b) n6 is the sum of the ranks of the groups generated by the lines.

Compute n =
∑6

i=1 ni to get your answer.
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