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Inverse Galois problem

Question: Inverse Galois problem
Is every finite group a Galois group over Q7

This problem welcomes many variations and insights
from many areas of mathematics!

Question: Effective inverse Galois problem
Given G < S4 transitive, exhibit f(x) € Q[x] such that
Gal(f) =~ G.

The L-functions and Modular Forms Database
(www.lmfdb.org) provides a catalogue.

This is also nicely organized by Kluners-Malle
(galoisdb.math.upb.de).
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Two groups where the inverse Galois problem is unknown

Ordering by transitive degree d, the inverse Galois problem is known for all
groups G < Sy with d < 23 except for two groups.
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Two groups where the inverse Galois problem is unknown

Ordering by transitive degree d, the inverse Galois problem is known for all
groups G < Sy with d < 23 except for two groups.

The first unknown group 23T5 ~ M3 is the Mathieu group on 23 letters.
The remaining group is 1777 ~ SLy(F6) x C,.

Observe
SLy(F+6)
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groups G < Sy with d < 23 except for two groups.
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The remaining group is 1777 ~ SLy(F6) x C,.

Observe
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The first unknown group 23T5 ~ M3 is the Mathieu group on 23 letters.
The remaining group is 1777 ~ SLy(F6) x C,.

Observe
SL;(F16) = PSLy(IF16) = PGL,(F16) O P'(IF16)

= SLz(Fm) — Sq7.
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Two groups where the inverse Galois problem is unknown

Ordering by transitive degree d, the inverse Galois problem is known for all
groups G < Sy with d < 23 except for two groups.

The first unknown group 23T5 ~ M3 is the Mathieu group on 23 letters.
The remaining group is 1777 ~ SLy(F6) x C,.

Observe
SL;(F16) = PSLy(IF16) = PGL,(F16) O P'(IF16)

= SLz(Fm) — Sq7.

We also have Aut(FFs) ~ C, (cyclic of order 4) acting coefficientwise, compatible
with the action on P'(Fy6); we take the extension by G, < G,

giving
71— SLZ(F‘]6) — 17717 — C2 — 1.
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Theorem (van Bommel-C-Elkies-Keller-Schiavone-Voight)
The effective inverse Galois problem holds for the group 17T7.
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Theorem (van Bommel-C-Elkies-Keller-Schiavone-Voight)

The effective inverse Galois problem holds for the group 17T7.
The polynomial

f(x) = x"7 — 2x"% +12x™ — 28x™ + 60x™ — 160x™ + 200x"" — 500x"® + 705x°
— 886x% +2024x” — 604X + 2146x° + 80x"* — 1376x° — 496x% — 1013x — 490

has Gal(f) ~ 1777 ~ SLz(Fm) x Cy.
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Theorem (van Bommel-C-Elkies-Keller-Schiavone-Voight)
The effective inverse Galois problem holds for the group 17T7.
The polynomial

f(x) = x"7 — 2x"% +12x™ — 28x™ + 60x™ — 160x™ + 200x"" — 500x"® + 705x°
— 886x% +2024x” — 604X + 2146x° + 80x"* — 1376x° — 496x% — 1013x — 490

has Gal(f) ~ 1777 ~ SLz(Fm) x Cy.

So far, we have 4 polynomials for 17T7.

Question
How does one construct such field?
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Matrix Galois groups: from geometry, elliptic curves
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E:y2 +y=x3— x2
P+Q+R~0



Matrix Galois groups: from geometry, elliptic curves
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E:y? +y=x3—x%and (0,0) € E[5|(Q).
P+Q+R~0
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Elliptic curve torsion

Let E be an elliptic curve over Q. For m > 1, we define the set of m-torsion points

E[m])(Q?) := {P € E: mP = co}.
Since E(C) ~ C/A and the group
law is algebraic, we have

E[m)(Q™) = E[m](C) = (Z/mZ)’.
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Elliptic curve torsion

Let E be an elliptic curve over Q. For m > 1, we define the set of m-torsion points
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Let E be an elliptic curve over Q. For m > 1, we define the set of m-torsion points

E[m])(Q?) := {P € E: mP = co}.
Since E(C) ~ C/A and the group
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E[m)(Q™) = E[m](C) = (Z/mZ)’.

Let Q(E[m]) be the field generated by x and y-coordinates of all m-torsion points.
Then Q(E[m]) 2 Q is a Galois extension and

Gal(Q(E[m]) | Q) = Aut(E[m](Q?) ~ (Z/mZ)? ~ GLy(Z/mZ).
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Let E be an elliptic curve over Q. For m > 1, we define the set of m-torsion points

E[m])(Q?) := {P € E: mP = co}.
Since E(C) ~ C/A and the group
law is algebraic, we have
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Elliptic curve torsion

Let E be an elliptic curve over Q. For m > 1, we define the set of m-torsion points

E[m])(Q?) := {P € E: mP = co}.
Since E(C) ~ C/A and the group
law is algebraic, we have

E[m)(Q™) = E[m](C) = (Z/mZ)’.

Let Q(E[m]) be the field generated by x and y-coordinates of all m-torsion points.
Then Q(E[m]) 2 Q is a Galois extension and

Gal(Q(E[m]) | Q) — Aut(E[m](QaL) ~ (Z/mZ)* ~ GLy(Z/mZ).
For example, for E:y? +y = x3 — x? (11.a3), the field Q(E[5]) is the splitting field of
X' —3x% + 6x% 4+ 11x" — 29x° — 15%° — 6x* — 55x> + 65x? + 200X + 100
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Matrix Galois groups

Let Q(E[m]) be the field generated by x and y-coordinates of all m-torsion points.
Then Q(E[m]) 2 Q is a Galois extension and

Gal(Q(E[m]) | Q) — Aut(E[m](Q™)) = GL(Z/mZ).
For example, for E:y? +y = x> — x? (11.a3), the field Q(E[5]) is the splitting field of
X1% —3x% + 6x8 4+ 11x” — 29x® — 15x° — 6x* — 55x + 65x% 4 200x 4 100
Gal(Q(E[5]) | Q) # GL(Z/5Z)
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Matrix Galois groups

Let Q(E[m]) be the field generated by x and y-coordinates of all m-torsion points.
Then Q(E[m]) 2 Q is a Galois extension and

Gal(Q(E[m]) | Q) — Aut(E[m](Q™)) = GL(Z/mZ).
For example, for E:y? +y = x> — x? (11.a3), the field Q(E[5]) is the splitting field of
X1% —3x% + 6x8 4+ 11x” — 29x® — 15x° — 6x* — 55x + 65x% 4 200x 4 100
Gal(Q(E[5]) | Q) # GL(Z/5Z)
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Gal(Q(E[m]) | Q) ~ GLy(Z/mZ), if5fm
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Matrix Galois groups

Let Q(E[m]) be the field generated by x and y-coordinates of all m-torsion points.
Then Q(E[m]) © Q is a Galois extension and

Gal(Q(E[M]) | Q) = Aut(E[m](Q™)) =~ GLo(Z/mZ).

For example, for E:y? +y = x> — x? (11.a3), the field Q(E[5]) is the splitting field of
X190 — 3x% 4 6x8 4+ 1% — 29x5 — 15x°> — 6x* — 55x> + 65x% + 200x + 100
Gal(Q(E[5]) | Q) # GLy(Z/5Z)

and

Gal(Q(E[m]) | Q) ~ GL,(Z/mZ), if5¢m

Slogan
In number theory, maximal entropy is the norm.
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Matrix Galois groups: with endomorphisms
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Matrix Galois groups: with endomorphisms

E:y?=x3—x (32.a3)
has the additional symmetry (x,y) — (=X, 1y)
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Matrix Galois groups: with endomorphisms

E:y?=x3—x (32.a3)

has the additional symmetry (x,y) — (—x, 1y) giving R = Z[i] € K = Q(/) acting by
endomorphisms of E, written R — End(E).
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has the additional symmetry (x,y) — (—x, 1y) giving R = Z[i] € K = Q(/) acting by
endomorphisms of E, written R < End(Ek). But then we don't just have

E[m)(Q") = (z/mZ)?

as a Z-module
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has the additional symmetry (x,y) — (—x, 1y) giving R = Z[i] € K = Q(/) acting by
endomorphisms of E, written R < End(Ek). But then we don't just have

E[m)(Q™) ~ (z/mz)’
as a Z-module, but as a Z[i]-module

E[m](Q?") ~ Z[i]/mZ][i].
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Thus
Gal(K(E[m]) | K)
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Matrix Galois groups: with endomorphisms

E:y?=x3—x (32.a3)

has the additional symmetry (x,y) — (—x, 1y) giving R = Z[i] € K = Q(/) acting by
endomorphisms of E, written R < End(Ek). But then we don't just have

E[m)(Q™) ~ (z/mz)’
as a Z-module, but as a Z[i]-module
E[m)(Q%) ~ Z[i]/mZ][i].

Thus
Gal(K(E[m]) | K) = Autzy(Z[i]/mZ[i]) =~ GLy(Z[i]/mZ[i]) =~ (Z[i]/mZ[i])™.
Indeed, equality holds for 2 { m.


https://www.lmfdb.org/EllipticCurve/Q/32/a/3

Matrix Galois groups: with endomorphisms

E:y?=x3—x (32.a3)

has the additional symmetry (x,y) — (—x, 1y) giving R = Z[i] € K = Q(/) acting by
endomorphisms of E, written R < End(Ek). But then we don't just have

E[m)(Q™) ~ (z/mz)’
as a Z-module, but as a Z[i]-module
E[m)(Q%) ~ Z[i]/mZ][i].

Thus
Gal(K(E[m]) | K) = Autzy(Z[i]/mZ[i]) =~ GLy(Z[i]/mZ[i]) =~ (Z[i]/mZ[i])™.
Indeed, equality holds for 2 { m.

Slogan
Additional symmetries (endomorphisms) must be respected.
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Jacobians

Let X be a nice (smooth, projective, geometrically integral) curve of genus g > 1.

Then the group of divisors of degree 0 on X up to linear equivalence is
represented by an abelian variety called the Jacobian A := Jac(X) ~ Pic®(X).

When g =1and X = E is an elliptic curve, we have E ~ Jac(E) by P — [P — oo].
P+Q+R~0

In general, we can think about adding tuples of g-points.



Addition on the Jacobian of a genus 2 curve, e.g, X : y> = x> — 5x> + 4x + 1
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Jacobians

Let X be a nice (smooth, projective, geometrically integral) curve of genus g > 1.

Then the group of divisors of degree 0 on X up to linear equivalence is
represented by an abelian variety called the jacobian A := Jac(X) ~ Pic%(X).

When g =1and X = E is an elliptic curve, we have E ~ Jac(E) by P — [P — o0].
P+Q+R~0
In general, we can think about adding tuples of g-points.

We have A(C) ~ C9/A
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Let X be a nice (smooth, projective, geometrically integral) curve of genus g > 1.

Then the group of divisors of degree 0 on X up to linear equivalence is
represented by an abelian variety called the jacobian A := Jac(X) ~ Pic%(X).
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Jacobians

Let X be a nice (smooth, projective, geometrically integral) curve of genus g > 1.

Then the group of divisors of degree 0 on X up to linear equivalence is
represented by an abelian variety called the jacobian A := Jac(X) ~ Pic%(X).

When g =1and X = E is an elliptic curve, we have E ~ Jac(E) by P — [P — o0].
P+Q+R~0
In general, we can think about adding tuples of g-points.
We have A(C) ~ C9/A and again
Alm)(Q) = (Z/mZ)?.

So
Gal(Q(A[m]) | Q) = GLyg(Z/MZ).

We can again cut down on the image of Galois by additional endomorphisms.
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Galois representation for 1777

Recall we are trying to get 1777 ~ SLy(F16) x C; O IF126.
As abelian groups, we have F2, ~ (Z/27Z)2.
So we look for a curve X over Q of genus g = 4, so for A = Jac(X) we have
A2)(Q") ~ F;
such that over a (real) quadratic field F we acquire endomorphisms:
R := End(Af) C K
with [K : Q] = 4 and 2R prime, so
A2)(Q") = (R/2R)? = F,.
Where are we going to find such curve X?

A Hilbert modular form over F = Q(+/3) with Galois alignment: 2.2121-578.1-d.


https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.12.1/holomorphic/2.2.12.1-578.1-d

Classical Modular forms


https://www.lmfdb.org/knowledge/show/cmf
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/

Classical Modular forms

A (classical) modular form f of weight k on I c SL(2,Z), is a holomorphic
function defined on the the upper half plane b := {z : J(z) > 0} which satisfies
the transformation property

f02) = (223 = @+ affa

forallzehand vy = (g 2) € I and holomorphic at all the cusps of I' (= co points).

az+b
cz+d
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Classical Modular forms

A (classical) modular form f of weight k on I c SL(2,Z), is a holomorphic
function defined on the the upper half plane b := {z : J(z) > 0} which satisfies
the transformation property

f02) = (223 = @+ affa

forallzehand vy = (g 2) € I and holomorphic at all the cusps of I' (= co points).
If (31) €T, then f(z) = f(

az+b
cz+d

z+1) and f has a Fourier expansion

f(2) = Zanqna qg= e’z

n>0

If ap = 0 and a; = 1, then f is known as a cusps form.

www.Imfdb.org/ModularForm/GL2/Q/holomorphic/
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https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/
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Classical modular forms to geometry: Eichler-Shimura construction

To an eigenform
f=) anq" € SF"(Fo(N))  an €K :=Q(a1,02,03,...)
n>1

one can attach an abelian variety Ar/Q such that

dimAs = deg K¢
tAans) = I wss)= TI T1(1-r(ap)p™ +><(p)p”“p‘2s)f1
o:Kp—=C o:Kg—=C p

If Kr = Q, then As is an elliptic curve E¢, and ap = p + 1 — #E(Fp) for p { disc ;.

This construction can be made explicit via the Jacobian of Xo(N)
e I I
MIN feG\S3*"(Fo(M))

and enables one compute the period matrix of A¢ to any desired precision.
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These follow similar transformation rules and also come with Fourier expansions
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Hilbert modular forms to geometry: Eichler-Shimura construction

Replacing SL,(Z) with GLj(ZF), where F C R, gives us Hilbert modular forms.

These follow similar transformation rules and also come with Fourier expansions

f=a+ > ag

VED;Q)
seen as differential forms in the modular variety Xo(9%) of dimension deg F.

To an eigenform f € S7€%(T'o(91)) we also expect the existence of A¢/F, such that:

dimAr = deg Kf
-1
Lars) = T o) = TI TI(7—7(a) Nm(p)~ + x(p) Nm(p)*~" Nm(p) )
a:Kf<—>(C o:Kr—=C p

However, for F # @, we no longer have a Jacobian to work with!
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Eichler-Shimura relations for real quadratic fields

Theorem (Oda)
Let F be a totally real quadratic field with trivial narrow class group.

Let f € SJ°¥(T'o(M)) be an eigenform with eigenvalue field K.
There exists abelian varieties A¢/C and A¢/C of dimension g = deg K¢ such that

H1(Afa Q) ®Kf H1(Aj/f7 Q)= H2(X0(m)[f]a Q)
as Kg-Hodge structures.
- The construction is not explicit

- The fields of definition are unknown
- Ar are only well defined up to isogeny
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Nonetheless, Oda gives an explicit formula for their periods T(Af),T(A]/c) € hY.
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Oda + BSD conjecture
For a quadratic character x of signature ss’, we have
a, Q%' (f7) = —4m?Vdisc FG(X)L(f® ® x,1)  for some a, € Zr.

By computing L(f? ® x, 1) for several x, we can guess the periods 7(As) and T(A]/c).
This method leads to 7(As) € IR. Hence, expected to be off by at least a 2-isogeny.



Recovering an abelian variety from its L-function via BSD

Nonetheless, Oda gives an explicit formula for their periods T(Af),T(A]/c) € hY.

Q+_ o !/ Q N o
() = { 5 () (A7) = § o )
U:Kf%c U:Kf;)(c
Oda + BSD conjecture
For a quadratic character x of signature ss’, we have
a, Q%' (f7) = —4m?Vdisc FG(X)L(f® ® x,1)  for some a, € Zr.

By computing L(f? ® x, 1) for several x, we can guess the periods 7(As) and T(A]/c).
This method leads to 7(As) € IR. Hence, expected to be off by at least a 2-isogeny.

Dembeélé showcased such approach for reconstructing elliptic curves over F.
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From As to the 17 degree polynomial

We construct As(C) ~ C9/As by taking

/\f Z:ZKf-T(Af)EBZKf'(1~~-1)t

There are 17 abelian fourfolds A, that are 2-isogenous to Ar that respect the
endomorphism ring, i.e, End(A,) = End(Af) = Z, which leads us to define

P = JJ(t - cEu(A))/Eu(Ay)) € FIt]

Theorem
We have P € Q[t] and has Galois group 17T7.
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The hunt for 7 degree polynomial

+ By computing a, for Nmp < 80000 we obtain 7(As) to ~ 85 digits.

- We then searched for a 2-isogenous neighbor that looked like a Jacobian.

- This lead to the recognition of the first five coefficients of P as rationals.

- With Newton-Raphson method, we refined 7(Ar) and recognized the P € Q][t].

The rescaled integer polynomial is

t7 — 155176125916688t"® — 3903775123456327337126372744t™ — 56358325729359601656637373021434035279920t™
— 366800840143173954605482375177978351855973622141128420t

— 1148273598471179728781481033200461057071613065513809470959738416912t '

— 1814416503358004575011887633363669311563353153960463604533351275745379344187064t 11

— 17708636619282848037135677433620515114703040708156701654256438712405901681970048996 14562992t

— 20051761816455327745337405137833651123304126616376565312638724924223181384158787750761364528511 - - -
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The hunt for 7 degree polynomial

+ By computing a, for Nmp < 80000 we obtain 7(As) to ~ 85 digits.

- We then searched for a 2-isogenous neighbor that looked like a Jacobian.

- This lead to the recognition of the first five coefficients of P as rationals.

- With Newton-Raphson method, we refined 7(Ar) and recognized the P € Q][t].

The rescaled integer polynomial is

t7 — 155176125916688t"® — 3903775123456327337126372744t™ — 56358325729359601656637373021434035279920t™
— 366800840143173954605482375177978351855973622141128420t

— 1148273598471179728781481033200461057071613065513809470959738416912t '

— 1814416503358004575011887633363669311563353153960463604533351275745379344187064t 11

— 17708636619282848037135677433620515114703040708156701654256438712405901681970048996 14562992t

— 20051761816455327745337405137833651123304126616376565312638724924223181384158787750761364528511 - - -

github.com/edgarcosta/EichlerShimuraHMF
CPU/Human time: ??


https://github.com/edgarcosta/EichlerShimuraHMF




Curve

With refined 7(Ar) we were able to numerically reconstruct a genus 4 curve in P3:

—8xX% 4 8Xy + 17y? — 34xz — 2yz — 282% — 10xw — 9yw — 182w + 2w? = 0

4x3 — 6X2y — 6xy? + 12X°Z + 6XyZ 4 24y%Zz — 12x2% — 24Z2° + 2w

+TXYW + 4y?w + bxzw — 13yzw — 82w — 20xw? — 3zw? — 12w = 0

.

-z

———
74

0\
\




Conclusion



Conclusion

Theorem (van Bommel-C-Elkies-Keller-Schiavone-Voight)
The effective inverse Galois problem holds for the group 17T7.
The polynomial

f(x) = x"7 = 2x"® + 12x™ — 28x™ + 60x™ — 160x™ + 200x™ — 500x"® + 705%°
— 886x% +2024x" — 604x° + 2146x° + 80x* — 1376x° — 496X% — 1013X — 490

has Gal(f) ~ 1777 ~ SLZ(]F‘]6) x Cy.
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- We exhibited a GL,-modular form over Q(+/3) with Galois alignment whose
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- To make it effective, we reconstructed first the 2-isogeny polynomial of an
abelian fourfold and then a curve with isomorphic Jacobian.



Conclusion

Theorem (van Bommel-C-Elkies-Keller-Schiavone-Voight)
The effective inverse Galois problem holds for the group 17T7.
The polynomial

f(x) = x"7 = 2x"® + 12x™ — 28x™ + 60x™ — 160x™ + 200x™ — 500x"® + 705%°
— 886x% +2024x" — 604x° + 2146x° + 80x* — 1376x° — 496X% — 1013X — 490

has Gal(f) ~ 1777 ~ SLZ(]F‘]6) x Cy.

- We exhibited a GL,-modular form over Q(+/3) with Galois alignment whose
mod 2 Galois representation gives SL;(F1g).

- To make it effective, we reconstructed first the 2-isogeny polynomial of an
abelian fourfold and then a curve with isomorphic Jacobian.

- Are there infinitely many? Who knows



