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Inverse Galois problem

Question: Inverse Galois problem
Is every finite group a Galois group over Q?

This problem welcomes many variations and insights
from many areas of mathematics!

Question: Effective inverse Galois problem
Given G ≤ Sd transitive, exhibit f (x) ∈ Q[x] such that
Gal(f ) ' G.

The L-functions and Modular Forms Database
(www.lmfdb.org) provides a catalogue.
This is also nicely organized by Klüners–Malle
(galoisdb.math.upb.de).

https://www.lmfdb.org
http://http://galoisdb.math.upb.de/
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Two groups where the inverse Galois problem is unknown

Ordering by transitive degree d, the inverse Galois problem is known for all
groups G ≤ Sd with d ≤ 23 except for two groups.

The first unknown group 23T5 ' M23 is the Mathieu group on 23 letters.

The remaining group is 17T7 ' SL2(F16)o C2.

Observe
SL2(F16) = PSL2(F16) = PGL2(F16) � P1(F16)

⇒ SL2(F16) ↪→ S17.
We also have Aut(F16) ' C4 (cyclic of order 4) acting coefficientwise, compatible
with the action on P1(F16); we take the extension by C2 ≤ C4

giving
1→ SL2(F16) → 17T7→ C2 → 1.

https://www.lmfdb.org/GaloisGroup/23T5
https://www.lmfdb.org/GaloisGroup/17T7
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Main theorem

Theorem (van Bommel–C–Elkies–Keller–Schiavone–Voight)
The effective inverse Galois problem holds for the group 17T7.

The polynomial

f (x) = x17 − 2x16 + 12x15 − 28x14 + 60x13 − 160x12 + 200x11 − 500x10 + 705x9

− 886x8 + 2024x7 − 604x6 + 2146x5 + 80x4 − 1376x3 − 496x2 − 1013x − 490

has Gal(f ) ' 17T7 ' SL2(F16)o C2.

So far, we have 4 polynomials for 17T7.

Question
How does one construct such field?

http://www.lmfdb.org/NumberField/?galois_group=17T7
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Matrix Galois groups: from geometry, elliptic curves

E: y2 + y = x3 − x2 and (0, 0) ∈ E[5](Q).
P+ Q+ R ∼ 0



Elliptic curve torsion

Let E be an elliptic curve over Q. For m ≥ 1, we define the set of m-torsion points

E[m](Qal) := {P ∈ E : mP = ∞}.
Since E(C) ' C/Λ and the group
law is algebraic, we have

E[m](Qal) = E[m](C) ' (Z/mZ)2.

Let Q(E[m]) be the field generated by x and y-coordinates of all m-torsion points.
Then Q(E[m]) ⊇ Q is a Galois extension and

Gal(Q(E[m]) |Q) ↪→ Aut(E[m](Qal) ' (Z/mZ)2 ' GL2(Z/mZ).

For example, for E: y2 + y = x3 − x2 (11.a3), the field Q(E[5]) is the splitting field of

x10 − 3x9 + 6x8 + 11x7 − 29x6 − 15x5 − 6x4 − 55x3 + 65x2 + 200x + 100

https://www.lmfdb.org/EllipticCurve/Q/11/a/3
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Matrix Galois groups: with endomorphisms

E: y2 = x3 − x (32.a3)

has the additional symmetry (x, y) 7→ (−x, iy) giving R = Z[i] ⊂ K = Q(i) acting by
endomorphisms of E, written R ↪→ End(EK). But then we don’t just have

E[m](Qal) ' (Z/mZ)2

as a Z-module, but as a Z[i]-module

E[m](Qal) ' Z[i]/mZ[i].

Thus

Gal(K(E[m]) | K) ↪→ AutZ[i](Z[i]/mZ[i]) ' GL1(Z[i]/mZ[i]) ' (Z[i]/mZ[i])×.

Indeed, equality holds for 2 - m.

Slogan
Additional symmetries (endomorphisms) must be respected.

https://www.lmfdb.org/EllipticCurve/Q/32/a/3
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Jacobians

Let X be a nice (smooth, projective, geometrically integral) curve of genus g ≥ 1.

Then the group of divisors of degree 0 on X up to linear equivalence is
represented by an abelian variety called the Jacobian A := Jac(X) ' Pic0(X).

When g = 1 and X = E is an elliptic curve, we have E ' Jac(E) by P 7→ [P−∞].

P+ Q+ R ∼ 0

In general, we can think about adding tuples of g-points.
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Jacobians

Let X be a nice (smooth, projective, geometrically integral) curve of genus g ≥ 1.

Then the group of divisors of degree 0 on X up to linear equivalence is
represented by an abelian variety called the Jacobian A := Jac(X) ' Pic0(X).

When g = 1 and X = E is an elliptic curve, we have E ' Jac(E) by P 7→ [P−∞].

P+ Q+ R ∼ 0

In general, we can think about adding tuples of g-points.

We have A(C) ' Cg/Λ

and again

A[m](Qal) ' (Z/mZ)2g.

So
Gal(Q(A[m]) |Q) ↪→ GL2g(Z/mZ).

We can again cut down on the image of Galois by additional endomorphisms.
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Galois representation for 17T7

Recall we are trying to get 17T7 ' SL2(F16)o C2

� F216.

As abelian groups, we have F216 ' (Z/2Z)8.

So we look for a curve X over Q of genus g = 4, so for A = Jac(X) we have

A[2](Qal) ' F82 ;

such that over a (real) quadratic field F we acquire endomorphisms:

R := End(AF) ⊆ K

with [K : Q] = 4 and 2R prime, so

A[2](Qal) ' (R/2R)2 ' F216.

Where are we going to find such curve X?

A Hilbert modular form over F = Q(
√
3) with Galois alignment: 2.2.12.1-578.1-d.

https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.12.1/holomorphic/2.2.12.1-578.1-d
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Classical Modular forms

A (classical) modular form f of weight k on Γ ⊂ SL(2,Z), is a holomorphic
function defined on the the upper half plane h := {z : =(z) > 0} which satisfies
the transformation property

f (γ z) := f
(
az + b
cz + d

)
= (cz + d)kf (z)

for all z ∈ h and γ =
( a b
c d

)
∈ Γ and holomorphic at all the cusps of Γ (=∞ points).

If
( 1 1
0 1

)
∈ Γ, then f (z) = f (z + 1) and f has a Fourier expansion

f (z) =
∑
n≥0

anqn, q = e2πiz.

If a0 = 0 and a1 = 1, then f is known as a cusps form.

www.lmfdb.org/ModularForm/GL2/Q/holomorphic/

https://www.lmfdb.org/knowledge/show/cmf
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/
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Classical modular forms to geometry: Eichler–Shimura construction

To an eigenform

f =
∑
n≥1

anqn ∈ Snew2 (Γ0(N)) an ∈ Kf := Q(a1,a2,a3, . . . )

one can attach an abelian variety Af/Q such that

dimAf = deg Kf

L(Af , s) =
∏

σ:Kf ↪→C
L(f σ, s) =

∏
σ:Kf ↪→C

∏
p

(
1− τ(ap)p−s + χ(p)pk−1p−2s

)−1

If Kf = Q, then Af is an elliptic curve Ef , and ap = p+ 1−#E(Fp) for p - disc Ef .

This construction can be made explicit via the Jacobian of X0(N)

J0(N) ∼
⊕
M|N

⊕
f∈GQ\Snew2 (Γ0(M))

Aσ0(N/M)f

and enables one compute the period matrix of Af to any desired precision.
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Hilbert modular forms to geometry: Eichler–Shimura construction

Replacing SL2(Z) with GL+2 (ZF), where F ⊂ R, gives us Hilbert modular forms.

These follow similar transformation rules and also come with Fourier expansions

f = a0 +
∑

ν∈D−1
>0

aνqν

seen as differential forms in the modular variety X0(N) of dimension deg F.

To an eigenform f ∈ Snew2 (Γ0(N)) we also expect the existence of Af/F, such that:

dimAf = deg Kf

L(Af , s) =
∏

σ:Kf ↪→C
L(f σ, s) =

∏
σ:Kf ↪→C

∏
p

(
1− τ(ap) Nm(p)−s + χ(p) Nm(p)k−1Nm(p)−2s

)−1

However, for F 6= Q, we no longer have a Jacobian to work with!
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Eichler–Shimura relations for real quadratic fields

Theorem (Oda)
Let F be a totally real quadratic field with trivial narrow class group.

Let f ∈ Snew2 (Γ0(N)) be an eigenform with eigenvalue field Kf .

There exists abelian varieties Af/C and A′f/C of dimension g = deg Kf such that

H1(Af ,Q)⊗Kf H
1(A′f ,Q) = H2(X0(N)[f ],Q)

as Kf -Hodge structures.

• The construction is not explicit
• The fields of definition are unknown
• Af are only well defined up to isogeny
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Recovering an abelian variety from its L-function via BSD

Nonetheless, Oda gives an explicit formula for their periods τ(Af ), τ(A′f ) ∈ hg.

τ(Af ) =
{
Ω+−

Ω++
(f σ)

}
σ:Kf ↪→C

τ(A′f ) =
{
Ω−+

Ω++
(f σ)

}
σ:Kf ↪→C

Oda + BSD conjecture
For a quadratic character χ of signature ss′, we have

αχΩ
ss′(f σ) = −4π2

√
disc FG(χ)L(f σ ⊗ χ, 1) for some αχ ∈ ZF .

By computing L(f σ ⊗ χ, 1) for several χ, we can guess the periods τ(Af ) and τ(A′f ).

This method leads to τ(Af ) ∈ iR. Hence, expected to be off by at least a 2-isogeny.

Dembélé showcased such approach for reconstructing elliptic curves over F.
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From Af to the 17 degree polynomial

We construct Af (C) ' Cg/Λf by taking

Λf := ZKf · τ(Af )⊕ ZKf · (1 · · · 1)
t

There are 17 abelian fourfolds Aγ that are 2-isogenous to Af that respect the
endomorphism ring, i.e., End(Aγ) = End(Af ) = ZKf , which leads us to define

P :=
∏
γ

(t − c4γE4(Aγ)/E4(Af )) ∈ F[t]

Theorem
We have P ∈ Q[t] and has Galois group 17T7.
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The hunt for the 17 degree polynomial

• By computing ap for Nm p ≤ 80 000 we obtain τ(Af ) to ∼ 85 digits.
• We then searched for a 2-isogenous neighbor that looked like a Jacobian.
• This lead to the recognition of the first five coefficients of P as rationals.
• With Newton–Raphson method, we refined τ(Af ) and recognized the P ∈ Q[t].

The rescaled integer polynomial is

t17 − 155176125916688t16 − 3903775123456327337126372744t15 − 56358325729359601656637373021434035279920t14

− 366800840143173954605482375177978351855973622141128420t13

− 1148273598471179728781481033200461057071613065513809470959738416912t12

− 1814416503358004575011887633363669311563353153960463604533351275745379344187064t11

− 1770863661928284803713567743362051511470304070815670165425643871240590168197004899614562992t10

− 20051761816455327745337405137833651123304126616376565312638724924223181384158787750761364528511 · · ·

github.com/edgarcosta/EichlerShimuraHMF
CPU/Human time: ??

https://github.com/edgarcosta/EichlerShimuraHMF
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The hunt for the 17 degree polynomial

• By computing ap for Nm p ≤ 80 000 we obtain τ(Af ) to ∼ 85 digits.
• We then searched for a 2-isogenous neighbor that looked like a Jacobian.
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Curve

With refined τ(Af ) we were able to numerically reconstruct a genus 4 curve in P3:

−8x2 + 8xy + 17y2 − 34xz − 2yz − 28z2 − 10xw − 9yw − 18zw + 2w2 = 0
4x3 − 6x2y − 6xy2 + 12x2z + 6xyz + 24y2z − 12xz2 − 24z3 + 2x2w
+7xyw + 4y2w + 4xzw − 13yzw − 8z2w − 20xw2 − 3zw2 − 12w3 = 0
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Conclusion

Theorem (van Bommel–C–Elkies–Keller–Schiavone–Voight)
The effective inverse Galois problem holds for the group 17T7.
The polynomial

f (x) = x17 − 2x16 + 12x15 − 28x14 + 60x13 − 160x12 + 200x11 − 500x10 + 705x9

− 886x8 + 2024x7 − 604x6 + 2146x5 + 80x4 − 1376x3 − 496x2 − 1013x − 490

has Gal(f ) ' 17T7 ' SL2(F16)o C2.

• We exhibited a GL2-modular form over Q(
√
3) with Galois alignment whose

mod 2 Galois representation gives SL2(F16).
• To make it effective, we reconstructed first the 2-isogeny polynomial of an
abelian fourfold and then a curve with isomorphic Jacobian.

• Are there infinitely many? Who knows
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