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Classical modular forms

To an eigenform

f =
∑
n≥1

anqn ∈ Snew2 (Γ0(N)) an ∈ Kf := Q(a1,a2,a3, . . . )

one can attach an abelian variety Af/Q such that

dimAf = deg Kf
L(Af , s) =

∏
σ:Kf ↪→C

L(f σ, s)

This construction can be made explicit via the Jacobian of X0(N)

J0(N) ∼
⊕
M|N

⊕
f∈GQ\Snew2 (Γ0(M))

Aσ0(N/M)
f

and enables one compute the period matrix of Af to any desired precision.
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Hilbert modular forms

Replacing SL2(Z) with GL+2 (ZF), where F ⊂ R, gives us Hilbert modular forms.

These also come with Fourier expansions

f = a0 +
∑

ν∈D−1
>0

aνqν

seen as differential forms in the modular variety X0(N) of dimension deg F.

To an eigenform f ∈ Snew2 (Γ0(N)) we also expect the existence of Af/F, such that:

dimAf = deg Kf
L(Af , s) =

∏
σ:Kf ↪→C

L(f σ, s)

However, for F 6= Q, we no longer have a Jacobian to work with!
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Eichler–Shimura relations for real quadratic fields

Theorem (Oda)
Let F be a totally real quadratic field with trivial narrow class group.

Let f ∈ Snew2 (Γ0(N)) be an eigenform with eigenvalue field Kf .

There exists abelian varieties Af/C and A′f/C of dimension g = deg Kf such that

H1(Af ,Q)⊗Kf H
1(A′f ,Q) = H2(X0(N)[f ],Q)

as Kf -Hodge structures.

The construction is not explicit, and the fields of definition are unknown.
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Recovering an abelian variety from its L-function A

Nonetheless, Oda gives an explicit formula for their periods τ(Af ), τ(A′f ) ∈ hg.

τ(Af ) =
{
Ω+−

Ω++
(f σ)

}
σ:Kf ↪→C

τ(A′f ) =
{
Ω−+

Ω++
(f σ)

}
σ:Kf ↪→C

OBSD conjecture
For a quadratic character χ of signature ss′, we have

αχΩ
ss′(f σ) = −4π2

√
disc FG(χ)L(f σ ⊗ χ, 1) for some αχ ∈ ZF .

By computing L(f σ ⊗ χ, 1) for several χ, we can guess the periods τ(Af ) and τ(A′f ).

Dembélé showcased such approach for elliptic curves.

The goal is to industrialize and generalize this approach.
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Inverse Galois problem for SL2(F16)o C2 ' 17T7

Theorem (van Bommel–C–Elkies–Derickx–Keller–Schiavon–Voight)
There is a finite Galois extension L/Q such that Gal(L/Q) ' SL2(F16)o C2.

The proof is non-constructive.

It relies on a modulo 2 Galois representation attached an Hilbert modular form f .

We aim to make the proof explicit by “reconstructing” the abelian fourfold Af/K .


