Eichler-Shimura Construction for Hilbert Modular Forms

Edgar Costa (MIT)
January 11, 2024, Simons Collaboration Annual Meeting
Slides available at edgarcosta.org
Raymond van Bommel, Noam Elkies, Maarten Derickx, Timo Keller, Samuel Schiavone, and John Voight.

Classical modular forms

To an eigenform

$$
f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}^{\text {new }}\left(\Gamma_{0}(N)\right) \quad a_{n} \in K_{f}:=\mathbb{Q}\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

one can attach an abelian variety A_{f} / \mathbb{Q} such that

$$
\begin{aligned}
\operatorname{dim} A_{f} & =\operatorname{deg} K_{f} \\
L\left(A_{f}, s\right) & =\prod_{\sigma: K_{f} \hookrightarrow \mathbb{C}} L\left(f^{\sigma}, s\right)
\end{aligned}
$$

Classical modular forms

To an eigenform

$$
f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}^{\text {new }}\left(\Gamma_{0}(N)\right) \quad a_{n} \in K_{f}:=\mathbb{Q}\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

one can attach an abelian variety A_{f} / \mathbb{Q} such that

$$
\begin{aligned}
\operatorname{dim} A_{f} & =\operatorname{deg} K_{f} \\
L\left(A_{f}, s\right) & =\prod_{\sigma: K_{f} \hookrightarrow \mathbb{C}} L\left(f^{\sigma}, s\right)
\end{aligned}
$$

This construction can be made explicit via the Jacobian of $X_{0}(N)$

$$
J_{0}(N) \sim \bigoplus_{M \mid N f \in G_{\mathbb{Q}} \backslash S_{2}^{\text {new }}\left(\Gamma_{0}(M)\right)} A_{f}^{\sigma_{0}(N / M)}
$$

Classical modular forms

To an eigenform

$$
f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2}^{\text {new }}\left(\Gamma_{0}(N)\right) \quad a_{n} \in K_{f}:=\mathbb{Q}\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

one can attach an abelian variety A_{f} / \mathbb{Q} such that

$$
\begin{aligned}
\operatorname{dim} A_{f} & =\operatorname{deg} K_{f} \\
L\left(A_{f}, s\right) & =\prod_{\sigma: K_{f} \hookrightarrow \mathbb{C}} L\left(f^{\sigma}, s\right)
\end{aligned}
$$

This construction can be made explicit via the Jacobian of $X_{0}(N)$

$$
J_{0}(N) \sim \bigoplus_{M \mid N f \in G_{Q} \backslash S_{2}^{\text {new }}\left(\Gamma_{0}(M)\right)} A_{f}^{\sigma_{0}(N / M)}
$$

and enables one compute the period matrix of A_{f} to any desired precision.

Hilbert modular forms

Replacing $S L_{2}(\mathbb{Z})$ with $G L_{2}^{+}\left(\mathbb{Z}_{F}\right)$, where $F \subset \mathbb{R}$, gives us Hilbert modular forms.
These also come with Fourier expansions

$$
f=a_{0}+\sum_{\nu \in \mathcal{D}_{>0}^{-1}} a_{\nu} q^{\nu}
$$

seen as differential forms in the modular variety $X_{0}(\mathfrak{N})$ of dimension $\operatorname{deg} F$.

Hilbert modular forms

Replacing $S L_{2}(\mathbb{Z})$ with $G L_{2}^{+}\left(\mathbb{Z}_{F}\right)$, where $F \subset \mathbb{R}$, gives us Hilbert modular forms.
These also come with Fourier expansions

$$
f=a_{0}+\sum_{\nu \in \mathcal{D}_{>0}^{-1}} a_{\nu} q^{\nu}
$$

seen as differential forms in the modular variety $X_{0}(\mathfrak{N})$ of dimension $\operatorname{deg} F$.
To an eigenform $f \in S_{2}^{\text {new }}\left(\Gamma_{0}(\mathfrak{N})\right)$ we also expect the existence of A_{f} / F, such that:

$$
\begin{aligned}
\operatorname{dim} A_{f} & =\operatorname{deg} K_{f} \\
L\left(A_{f}, s\right) & =\prod_{\sigma: K_{f} \hookrightarrow \mathbb{C}} L\left(f^{\sigma}, s\right)
\end{aligned}
$$

Hilbert modular forms

Replacing $S L_{2}(\mathbb{Z})$ with $G L_{2}^{+}\left(\mathbb{Z}_{F}\right)$, where $F \subset \mathbb{R}$, gives us Hilbert modular forms.
These also come with Fourier expansions

$$
f=a_{0}+\sum_{\nu \in \mathcal{D}_{>0}^{-1}} a_{\nu} q^{\nu}
$$

seen as differential forms in the modular variety $X_{0}(\mathfrak{N})$ of dimension $\operatorname{deg} F$.
To an eigenform $f \in S_{2}^{\text {new }}\left(\Gamma_{0}(\mathfrak{N})\right)$ we also expect the existence of A_{f} / F, such that:

$$
\begin{aligned}
\operatorname{dim} A_{f} & =\operatorname{deg} K_{f} \\
L\left(A_{f}, s\right) & =\prod_{\sigma: K_{f} \hookrightarrow \mathbb{C}} L\left(f^{\sigma}, s\right)
\end{aligned}
$$

However, for $F \neq \mathbb{Q}$, we no longer have a Jacobian to work with!

Eichler-Shimura relations for real quadratic fields

Theorem (Oda)

Let F be a totally real quadratic field with trivial narrow class group.
Let $f \in S_{2}^{\text {new }}\left(\Gamma_{0}(\mathfrak{N})\right)$ be an eigenform with eigenvalue field K_{f}.
There exists abelian varieties A_{f} / \mathbb{C} and $A_{f}^{\prime} / \mathbb{C}$ of dimension $g=\operatorname{deg} K_{f}$ such that

$$
H^{1}\left(A_{f}, \mathbb{Q}\right) \otimes_{K_{f}} H^{1}\left(A_{f}^{\prime}, \mathbb{Q}\right)=H^{2}\left(X_{0}(\mathfrak{N})[f], \mathbb{Q}\right)
$$

as K_{f}-Hodge structures.

Eichler-Shimura relations for real quadratic fields

Theorem (Oda)

Let F be a totally real quadratic field with trivial narrow class group.
Let $f \in S_{2}^{\text {new }}\left(\Gamma_{0}(\mathfrak{N})\right)$ be an eigenform with eigenvalue field K_{f}.
There exists abelian varieties A_{f} / \mathbb{C} and $A_{f}^{\prime} / \mathbb{C}$ of dimension $g=\operatorname{deg} K_{f}$ such that

$$
H^{1}\left(A_{f}, \mathbb{Q}\right) \otimes_{K_{f}} H^{1}\left(A_{f}^{\prime}, \mathbb{Q}\right)=H^{2}\left(X_{0}(\mathfrak{N})[f], \mathbb{Q}\right)
$$

as K_{f}-Hodge structures.
The construction is not explicit, and the fields of definition are unknown.

Recovering an abelian variety from its L-function A

Nonetheless, Oda gives an explicit formula for their periods $\tau\left(A_{f}\right), \tau\left(A_{f}^{\prime}\right) \in \mathfrak{h}^{g}$.

$$
\tau\left(A_{f}\right)=\left\{\frac{\Omega^{+-}}{\Omega^{++}}\left(f^{\sigma}\right)\right\}_{\sigma: K_{f} \hookrightarrow \mathbb{C}} \quad \tau\left(A_{f}^{\prime}\right)=\left\{\frac{\Omega^{-+}}{\Omega^{++}}\left(f^{\sigma}\right)\right\}_{\sigma: K_{f} \hookrightarrow \mathbb{C}}
$$

Recovering an abelian variety from its L-function A

Nonetheless, Oda gives an explicit formula for their periods $\tau\left(A_{f}\right), \tau\left(A_{f}^{\prime}\right) \in \mathfrak{h}^{g}$.

$$
\tau\left(A_{f}\right)=\left\{\frac{\Omega^{+-}}{\Omega^{++}}\left(f^{\sigma}\right)\right\}_{\sigma: K_{f} \hookrightarrow \mathbb{C}} \quad \tau\left(A_{f}^{\prime}\right)=\left\{\frac{\Omega^{-+}}{\Omega^{++}}\left(f^{\sigma}\right)\right\}_{\sigma: K_{f} \hookrightarrow \mathbb{C}}
$$

OBSD conjecture

For a quadratic character χ of signature $s s^{\prime}$, we have

$$
\alpha_{\chi} \Omega^{s s^{\prime}}\left(f^{\sigma}\right)=-4 \pi^{2} \sqrt{\operatorname{disc} F} G(\bar{\chi}) L\left(f^{\sigma} \otimes \chi, 1\right) \quad \text { for some } \alpha_{\chi} \in \mathbb{Z}_{F} .
$$

Recovering an abelian variety from its L-function A

Nonetheless, Oda gives an explicit formula for their periods $\tau\left(A_{f}\right), \tau\left(A_{f}^{\prime}\right) \in \mathfrak{h}^{g}$.

$$
\tau\left(A_{f}\right)=\left\{\frac{\Omega^{+-}}{\Omega^{++}}\left(f^{\sigma}\right)\right\}_{\sigma: K_{f} \hookrightarrow \mathbb{C}} \quad \tau\left(A_{f}^{\prime}\right)=\left\{\frac{\Omega^{-+}}{\Omega^{++}}\left(f^{\sigma}\right)\right\}_{\sigma: K_{f} \hookrightarrow \mathbb{C}}
$$

OBSD conjecture

For a quadratic character χ of signature $s s^{\prime}$, we have

$$
\alpha_{\chi} \Omega^{s s^{\prime}}\left(f^{\sigma}\right)=-4 \pi^{2} \sqrt{\operatorname{disc} F} G(\bar{\chi}) L\left(f^{\sigma} \otimes \chi, 1\right) \quad \text { for some } \alpha_{\chi} \in \mathbb{Z}_{F}
$$

By computing $L\left(f^{\sigma} \otimes \chi, 1\right)$ for several χ, we can guess the periods $\tau\left(A_{f}\right)$ and $\tau\left(A_{f}^{\prime}\right)$.
Dembélé showcased such approach for elliptic curves.

Recovering an abelian variety from its L-function A

Nonetheless, Oda gives an explicit formula for their periods $\tau\left(A_{f}\right), \tau\left(A_{f}^{\prime}\right) \in \mathfrak{h}^{g}$.

$$
\tau\left(A_{f}\right)=\left\{\frac{\Omega^{+-}}{\Omega^{++}}\left(f^{\sigma}\right)\right\}_{\sigma: K_{f} \hookrightarrow \mathbb{C}} \quad \tau\left(A_{f}^{\prime}\right)=\left\{\frac{\Omega^{-+}}{\Omega^{++}}\left(f^{\sigma}\right)\right\}_{\sigma: K_{f} \hookrightarrow \mathbb{C}}
$$

OBSD conjecture

For a quadratic character χ of signature $s s^{\prime}$, we have

$$
\alpha_{\chi} \Omega^{s s^{\prime}}\left(f^{\sigma}\right)=-4 \pi^{2} \sqrt{\operatorname{disc} F} G(\bar{\chi}) L\left(f^{\sigma} \otimes \chi, 1\right) \quad \text { for some } \alpha_{\chi} \in \mathbb{Z}_{F}
$$

By computing $L\left(f^{\sigma} \otimes \chi, 1\right)$ for several χ, we can guess the periods $\tau\left(A_{f}\right)$ and $\tau\left(A_{f}^{\prime}\right)$.
Dembélé showcased such approach for elliptic curves.
The goal is to industrialize and generalize this approach.

Theorem (van Bommel-C-Elkies-Derickx-Keller-Schiavon-Voight)
There is a finite Galois extension L / \mathbb{Q} such that $\operatorname{Gal}(L / \mathbb{Q}) \simeq \operatorname{SL}_{2}\left(\mathbb{F}_{16}\right) \rtimes C_{2}$.
The proof is non-constructive.
It relies on a modulo 2 Galois representation attached an Hilbert modular form f.
We aim to make the proof explicit by "reconstructing" the abelian fourfold A_{f} / K.

