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Hypergeometric datum

A hypergeometric datum of degree r is defined by two disjoint tuples

(a1,...,ar), (B1,-..,08r) overQNJ0,1)

which are each balanced: the multiplicity of any reduced fraction depends only
on its denominator. For example
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Hypergeometric datum

A hypergeometric datum of degree r is defined by two disjoint tuples
(a1,...,ar), (B1,-..,08r) overQNJ0,1)

which are each balanced: the multiplicity of any reduced fraction depends only
on its denominator. For example

o = (%7 %7 %7%)a ﬁ = (%7 %7 %7%)

This datum defines a family of hypergeometric motives M?’B withz e Q\ {0, 1},
and a family of degree r L-functions:

HFP aﬂ ns

n>1
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L-functions of hypergeometric motives

HFP M p g

The primes p of bad reduction have the following forms.
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L-functions of hypergeometric motives

HFP M p g

The primes p of bad reduction have the following forms.

- piswild if vy(y) < 0 for some v € aU 3 (e.g, 2 and 3 in our example).
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L-functions of hypergeometric motives

HFP M p g

The primes p of bad reduction have the following forms.

- piswild if vy(y) < 0 for some v € aU 3 (e.g, 2 and 3 in our example).
- pistame if it is not wild, and either v,(z) # 0 or vp(z — 1) # 0.

If one completes the L-function
A(s) == N¥2 Ty 5(s) - L(MS7, 5)
We expect A to satisfy the functional equation
A(s) =eA(w+1—5).

To experimentally check this, one needs to know a, < B, where B € O(v/N). 312



The Good, the Tame and the Wild

H Fp MS 5 Z s Lgood( )+ Liame(S) - Luild ()

n>1
For p, a good prime, i.e,, neither wild nor tame, Fp, may be recovered from a trace
formula of the shape

v (3e) = s e (T e

=1

where (v)}, is a p-adic variant of (y)m =~v(v+1)--- (v + m —1).

Theorem (CKR20, CKR24)
The complexity of computing ap for good p < X is O(X) modulo log factors.

There is a recipe for Fp at the tame primes.
We do not yet have formulas for Fp at the wild primes. 4112



The Good, the Tame and the Wild

A(S) = NS/QFa,B(S)L(M?ﬂ)S) = (Fa,ﬁ(s) ’ Lgood) ’ (Nia/rQne ' Ltame(s)) : (Nj\,/fd : Lwild(s))
= Agood(S) - Atame(S) - Awita (S)

: Agood(s) v
Using the average polynomial time algorithm for a, [CKR20, CKR24]
Trace formula for Qpi fori>1
: Atame(s) v
There is a recipe for Niame [Roberts—Rodriguez Villegas]
* Ayig(s) &
No formula or recipe is known.

But the theory is forming... ¢ 5/12



David Roberts has a framework to reduce the computational problem of a motive
with several wild primes to several motives, each with a single wild prime.

We spent most of last week’s workshop gathering data for motives with a single
wild prime.

- Using functional equation to deduce wild data.
- Studying how Nyiq varies with z in certain families (more details later).
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L-functions with unknown invariants

By taking inverse Mellin transforms one can convert
A(s)=eA(w+1—-5s) into O(t) =e-t7"O(1/1)

where
O(t) =Y anp(nt/VN) and ¢(t) € o(e~™").
n>1
One may approximate O(t), hence, the functional equation, to a desired precision
by truncating the series expansion of ©(t) involving the first O(v/N) Dirichlet
coefficients.

O(t) ~e-t7O(1/t) where O(t) := Y a,¢(nt/VN)

n<B

7112



Approximate functional equation

O(t) me-t7O(1/t) where O(t) := Y a,¢(nt/VN)
n<B
If one guesses the ¢, then the functional equation at a point ty becomes

fto (C) ~ 0, with fto S R[Ch cey Cd}

where c are the coefficients of the unknown Euler factors.
In other words, we are trying to solve

0% min Ift,(X)|, where A'is a polytope.
cesnzd
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One can solve this problem in several ways
- Search: looping over all the possible unknown Euler factors. &
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Approximate functional equation

O(t) me-t7O(1/t) where O(t) := Y a,¢(nt/VN)
n<B
If one guesses the ¢, then the functional equation at a point ty becomes

fto (C) ~ 0, with fto S R[Ch cey Cd}

where c are the coefficients of the unknown Euler factors.
In other words, we are trying to solve
0/ min Ift,(X)|, where A'is a polytope.
cennzd

One can solve this problem in several ways

- Search: looping over all the possible unknown Euler factors. &

- Minimize: solve the mixed-integer programming problem. &

+ Linearize: compute several f;, and treat each monomial as an unknown. & 4,



Trinomial motives

We consider a sequence of hypergeometric families where we can readily
compute conductors.

- Fixp,w>0and 0 <r < w;letm > 0vary, prime to p.

- Seta=mp", b=mp"and c =m(p"” — p").

- Hypergeometric motive with v-vector [—a, b, c] is weight zero, with model

a%xP(1 — x)¢ — bbcz.

Substitute z = up® to get number field K, decompose K ® QpasKi&--- @Ky
with residue degrees fi,...,fn. Compute a = v,(A(K)) —a+ > f;, the Swan
conductor of K at p.

- Plot (R/c,a/c).

- Varying m corresponds to substituting fractional powers of p.
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Trinomial picture (p=2, w=2, r=0)

254 %

- x-axis is R/c, where
k= v, (2). 201

- y-axis is a/c, where
a Is the Swan
conductor at p.

- Top line is the
“ramp,” where
(k,p) =1.




Wild Euler factors of [1, 2, 4]-families

[1,2,4]-families
Hypergeometric families with «;, 8 € {1,1/2,1/4,3/4}.

- The only wild prime is 2.

- Assume R = v(z) # 0 and o(R) denote the unscaled ramp as a function of k.
Then o(R) is a conjectured upper bound on ca = va(N).

- Let ny; denote the number of 1s in « or 3, whichever is higher.

Kloosterman polynomials

For each n > 1, consider the hypergeometric family defined by the n-tuples
a=(1/2,...,1/2),8=(1,...,1). Let z= 22" The Euler factor at 2 of the motive
M?’ﬁ is the Kloosterman polynomial of degree n; = n.
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Predictions and data

Let M2? be a hypergeometric motive in a [1,2,4]-family, and k = v(2).
Predictions about Lo(T) and ¢, (Erasing principle + degenerations at 0, o)
- If 24 R, then La(T) =1 and ¢ca = a(R).
- If 21| k, then

1. At bottom of ramp, either Ly(T) is the Kloosterman polynomial of degree n;
with a 2-power twist factor related to the weight, or co = 0.

2. On low plateau, Ly(T) = 1 or a product of at most two polys of the form 1 — 2/T.
3. On high plateau, Ly(T) = 1 or of the form 1 — 2/T.
Computed data for M®? with degree < 7 and z = 2" for different positions k wrt
the ramp. They match predictions. A few exceptions possibly due to: poles, co = 0.
Example

a:(Lla%a%)ﬁ (i

,%,3.3),z=278 Predicted Ly(T) is 1 + T + 272
It turns out that co =0 and L

nd La(T) = (1+ T +2T2)2, e



