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Hypergeometric datum

A hypergeometric datum of degree r is defined by two disjoint tuples

(α1, . . . , αr), (β1, . . . , βr) over Q ∩ [0, 1)

which are each balanced: the multiplicity of any reduced fraction depends only
on its denominator. For example

α = (14 ,
1
2 ,

1
2 ,

3
4), β = (13 ,

1
3 ,

2
3 ,

2
3).

This datum defines a family of hypergeometric motives Mα,β
z with z ∈ Q \ {0, 1},

and a family of degree r L-functions:

L(Mα,β
z , s) =

∏
p
Fp
(
Mα,β
z ,p−s

)
=
∑
n≥1

an
ns
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L-functions of hypergeometric motives

L
(
Mα,β
z , s

)
=
∏
p
Fp
(
Mα,β
z ,p−s

)
=
∑
n≥1

an
ns

The primes p of bad reduction have the following forms.

• p is wild if vp(γ) < 0 for some γ ∈ α ∪ β (e.g., 2 and 3 in our example).
• p is tame if it is not wild, and either vp(z) 6= 0 or vp(z − 1) 6= 0.

If one completes the L-function

Λ(s) := Ns/2 · Γα,β(s) · L
(
Mα,β
z , s

)
We expect Λ to satisfy the functional equation

Λ(s) = εΛ(w + 1− s).

To experimentally check this, one needs to know an ≤ B, where B ∈ O(
√
N).
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The Good, the Tame and the Wild

L
(
Mα,β
z , s

)
=
∏
p
Fp
(
Mα,β
z ,p−s

)
=
∑
n≥1

an
ns

= Lgood(s) · Ltame(s) · Lwild(s)

For p, a good prime, i.e., neither wild nor tame, Fp, may be recovered from a trace
formula of the shape

Hq

(
α

β

∣∣∣z) :=
1

1− q

q−2∑
m=0

±pξ(m)

 r∏
j=1

(αj)
∗
m

(βj)
∗
m

 [z]m,

where (γ)∗m is a p-adic variant of (γ)m = γ(γ + 1) · · · (γ +m− 1).

Theorem (CKR20, CKR24)
The complexity of computing ap for good p ≤ X is O(X) modulo log factors.

There is a recipe for Fp at the tame primes.
We do not yet have formulas for Fp at the wild primes. 4/12



The Good, the Tame and the Wild

Λ(s) := Ns/2Γα,β(s)L
(
Mα,β
z , s

)
=
(
Γα,β(s) · Lgood

)
·
(
Ns/2tame · Ltame(s)

)
·
(
Ns/2wild · Lwild(s)

)
= Λgood(s) · Λtame(s) · Λwild(s)

• Λgood(s) X
Using the average polynomial time algorithm for ap [CKR20, CKR24]
Trace formula for api for i > 1

• Λtame(s) X
There is a recipe for Ntame [Roberts–Rodriguez Villegas]

• Λwild(s)
No formula or recipe is known.
But the theory is forming... 5/12



Wild primes

David Roberts has a framework to reduce the computational problem of a motive
with several wild primes to several motives, each with a single wild prime.

We spent most of last week’s workshop gathering data for motives with a single
wild prime.

• Using functional equation to deduce wild data.
• Studying how Nwild varies with z in certain families (more details later).
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L-functions with unknown invariants

By taking inverse Mellin transforms one can convert

Λ(s) = εΛ(w + 1− s) into Θ(t) = ε · t−wΘ(1/t)

where
Θ(t) :=

∑
n≥1

anφ(nt/
√
N) and φ(t) ∈ O

(
e−rt2/r

)
.

One may approximate Θ(t), hence, the functional equation, to a desired precision
by truncating the series expansion of Θ(t) involving the first O(

√
N) Dirichlet

coefficients.

Θ̃(t) ≈ ε · t−wΘ̃(1/t) where Θ̃(t) :=
∑
n≤B

anφ(nt/
√
N)

7/12



Approximate functional equation

Θ̃(t) ≈ ε · t−wΘ̃(1/t) where Θ̃(t) :=
∑
n≤B

anφ(nt/
√
N)

If one guesses the ε, then the functional equation at a point t0 becomes

ft0(c) ≈ 0, with ft0 ∈ R[c1, . . . , cd]

where c are the coefficients of the unknown Euler factors.
In other words, we are trying to solve

0
?
≈ min

c∈4∩Zd
|ft0(x)|, where 4 is a polytope.

One can solve this problem in several ways
• Search: looping over all the possible unknown Euler factors.
• Minimize: solve the mixed-integer programming problem.
• Linearize: compute several fti and treat each monomial as an unknown.
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Trinomial motives

We consider a sequence of hypergeometric families where we can readily
compute conductors.

• Fix p, w > 0 and 0 ≤ r < w; let m > 0 vary, prime to p.
• Set a = mpw , b = mpr and c = m(pw − pr).
• Hypergeometric motive with γ-vector [−a,b, c] is weight zero, with model

aaxb(1− x)c − bbccz.

Substitute z = upk to get number field K , decompose K ⊗Qp as K1 ⊕ · · · ⊕ Kn
with residue degrees f1, . . . , fn. Compute α = vp(∆(K))− a+

∑
fi, the Swan

conductor of K at p.
• Plot (k/c, α/c).
• Varying m corresponds to substituting fractional powers of p.
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Trinomial picture (p=2, w=2, r=0)

• x-axis is k/c, where
k = vp(z).

• y-axis is α/c, where
α is the Swan
conductor at p.

• Top line is the
“ramp,” where
(k,p) = 1.

10/12



Wild Euler factors of [1, 2, 4]-families

[1,2,4]-families
Hypergeometric families with αi, βj ∈ {1, 1/2, 1/4, 3/4}.

• The only wild prime is 2.
• Assume k = v2(z) 6= 0 and σ(k) denote the unscaled ramp as a function of k.
Then σ(k) is a conjectured upper bound on c2 = v2(N).

• Let n1 denote the number of 1s in α or β, whichever is higher.

Kloosterman polynomials
For each n ≥ 1, consider the hypergeometric family defined by the n-tuples
α = (1/2, . . . , 1/2), β = (1, . . . , 1). Let z = 22n. The Euler factor at 2 of the motive
Mα,β
z is the Kloosterman polynomial of degree n1 = n.

11/12



Predictions and data

Let Mα,β
z be a hypergeometric motive in a [1, 2, 4]-family, and k = v2(z).

Predictions about L2(T) and c2 (Erasing principle + degenerations at 0,∞)

• If 2 - k, then L2(T) = 1 and c2 = σ(k).
• If 2 | k, then

1. At bottom of ramp, either L2(T) is the Kloosterman polynomial of degree n1
with a 2-power twist factor related to the weight, or c2 = 0.

2. On low plateau, L2(T) = 1 or a product of at most two polys of the form 1− 2iT .
3. On high plateau, L2(T) = 1 or of the form 1− 2iT .

Computed data for Mα,β
z with degree ≤ 7 and z = ±2k for different positions k wrt

the ramp. They match predictions. A few exceptions possibly due to: poles, c2 = 0.

Example
α = (1, 1, 12 ,

1
2), β = (14 ,

1
4 ,

3
4 ,

3
4), z = 2−8. Predicted L2(T) is 1 + T + 2T2.

It turns out that c2 = 0 and L2(T) = (1 + T + 2T2)2. 12/12


