Hypergeometric motives in the LMFDB

Edgar Costa (MIT) May 3, 2024, Simons Collaboration Meeting

Santiago Arango-Pineros, Edgar Costa, Shiva Chidambaram, Steve Huang, Kiran Kedlaya, David Roberts, David Roe, Sam Schiavone, Andrew V. Sutherland, and John Voight

A **hypergeometric datum** of degree *r* is defined by two disjoint tuples

 $(\alpha_1,\ldots,\alpha_r),(\beta_1,\ldots,\beta_r) \text{ over } \mathbb{Q} \cap [0,1)$

which are each **balanced**: the multiplicity of any reduced fraction depends only on its denominator. For example

$$\alpha = (\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}), \ \beta = (\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}).$$

A **hypergeometric datum** of degree *r* is defined by two disjoint tuples

 $(\alpha_1,\ldots,\alpha_r),(\beta_1,\ldots,\beta_r) \text{ over } \mathbb{Q} \cap [0,1)$

which are each **balanced**: the multiplicity of any reduced fraction depends only on its denominator. For example

$$\alpha = (\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}), \ \beta = (\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}).$$

This datum defines a family of hypergeometric motives $M_Z^{\alpha,\beta}$ with $z \in \mathbb{Q} \setminus \{0,1\}$, and a family of degree *r L*-functions:

$$L(M_{z}^{\alpha,\beta},s) = \prod_{p} F_{p}(M_{z}^{\alpha,\beta},p^{-s}) = \sum_{n\geq 1} \frac{a_{n}}{n^{s}}$$

L-functions of hypergeometric motives

$$L(M_{z}^{\alpha,\beta},s) = \prod_{p} F_{p}(M_{z}^{\alpha,\beta},p^{-s}) = \sum_{n\geq 1} \frac{a_{n}}{n^{s}}$$

The primes *p* of **bad reduction** have the following forms.

L-functions of hypergeometric motives

$$L(M_{z}^{\alpha,\beta},s) = \prod_{p} F_{p}(M_{z}^{\alpha,\beta},p^{-s}) = \sum_{n\geq 1} \frac{a_{n}}{n^{s}}$$

The primes *p* of **bad reduction** have the following forms.

• p is wild if $v_p(\gamma) < 0$ for some $\gamma \in \alpha \cup \beta$ (e.g., 2 and 3 in our example).

L-functions of hypergeometric motives

$$L(M_{z}^{\alpha,\beta},s) = \prod_{p} F_{p}(M_{z}^{\alpha,\beta},p^{-s}) = \sum_{n\geq 1} \frac{a_{n}}{n^{s}}$$

The primes *p* of **bad reduction** have the following forms.

- p is wild if $v_p(\gamma) < 0$ for some $\gamma \in \alpha \cup \beta$ (e.g., 2 and 3 in our example).
- *p* is **tame** if it is not wild, and either $v_p(z) \neq 0$ or $v_p(z-1) \neq 0$.

If one completes the *L*-function

$$\Lambda(\mathsf{s}) := \mathsf{N}^{\mathsf{s}/2} \cdot \Gamma_{\alpha,\beta}(\mathsf{s}) \cdot \mathsf{L}\big(\mathsf{M}_{\mathsf{z}}^{\alpha,\beta},\mathsf{s}\big)$$

We expect Λ to satisfy the functional equation

$$\Lambda(\mathsf{S}) = \epsilon \Lambda(\mathsf{W} + 1 - \mathsf{S}).$$

To experimentally check this, one needs to know $a_n \leq B$, where $B \in O(\sqrt{N})$.

The Good, the Tame and the Wild

$$L(M_{z}^{\alpha,\beta},s) = \prod_{p} F_{p}(M_{z}^{\alpha,\beta},p^{-s}) = \sum_{n\geq 1} \frac{a_{n}}{n^{s}} = L_{good}(s) \cdot L_{tame}(s) \cdot L_{wild}(s)$$

For p, a good prime, i.e., neither wild nor tame, F_p , may be recovered from a trace formula of the shape

$$H_q\begin{pmatrix}\alpha\\\beta\\z\end{pmatrix} := \frac{1}{1-q} \sum_{m=0}^{q-2} \pm p^{\xi(m)} \left(\prod_{j=1}^r \frac{(\alpha_j)_m^*}{(\beta_j)_m^*}\right) [z]^m,$$

where $(\gamma)_m^*$ is a *p*-adic variant of $(\gamma)_m = \gamma(\gamma + 1) \cdots (\gamma + m - 1)$.

Theorem (CKR20, CKR24)

The complexity of computing a_p for good $p \le X$ is O(X) modulo log factors.

There is a recipe for F_p at the tame primes. We do not yet have formulas for F_p at the wild primes.

The Good, the Tame and the Wild

$$\begin{split} \Lambda(s) &:= N^{s/2} \Gamma_{\alpha,\beta}(s) L\left(M_{z}^{\alpha,\beta},s\right) = \left(\Gamma_{\alpha,\beta}(s) \cdot L_{good}\right) \cdot \left(N_{tame}^{s/2} \cdot L_{tame}(s)\right) \cdot \left(N_{wild}^{s/2} \cdot L_{wild}(s)\right) \\ &= \Lambda_{good}(s) \cdot \Lambda_{tame}(s) \cdot \Lambda_{wild}(s) \end{split}$$

- $\Lambda_{good}(s) \checkmark$ Using the average polynomial time algorithm for a_p [CKR20, CKR24] Trace formula for a_{p^i} for i > 1
- $\Lambda_{tame}(s)$ 🗸

There is a recipe for N_{tame} [Roberts-Rodriguez Villegas]

Λ_{wild}(s) :
No formula or recipe is known.
But the theory is forming... :

David Roberts has a framework to reduce the computational problem of a motive with several wild primes to several motives, each with a single wild prime.

We spent most of last week's workshop gathering data for motives with a single wild prime.

- Using functional equation to deduce wild data.
- Studying how N_{wild} varies with z in certain families (more details later).

L-functions with unknown invariants

By taking inverse Mellin transforms one can convert

$$\Lambda(s) = \epsilon \Lambda(w + 1 - s)$$
 into $\Theta(t) = \epsilon \cdot t^{-w} \Theta(1/t)$

where

$$\Theta(t) := \sum_{n \ge 1} a_n \phi(nt/\sqrt{N}) \quad \text{and} \quad \phi(t) \in O(e^{-rt^{2/r}}).$$

One may approximate $\Theta(t)$, hence, the functional equation, to a desired precision by truncating the series expansion of $\Theta(t)$ involving the first $O(\sqrt{N})$ Dirichlet coefficients.

$$\widetilde{\Theta}(t) \approx \epsilon \cdot t^{-w} \widetilde{\Theta}(1/t)$$
 where $\widetilde{\Theta}(t) := \sum_{n \leq B} a_n \phi(nt/\sqrt{N})$

$$\widetilde{\Theta}(t) \approx \epsilon \cdot t^{-w} \widetilde{\Theta}(1/t)$$
 where $\widetilde{\Theta}(t) := \sum_{n \leq B} a_n \phi(nt/\sqrt{N})$

If one guesses the ϵ , then the functional equation at a point t_0 becomes

 $f_{t_0}(c) \approx 0$, with $f_{t_0} \in \mathbb{R}[c_1, \dots, c_d]$

where *c* are the coefficients of the unknown Euler factors. In other words, we are trying to solve

$$0 \stackrel{?}{pprox} \min_{c \in riangle \cap \mathbb{Z}^d} |f_{t_0}(x)|, \quad ext{where} \quad riangle ext{ is a polytope.}$$

$$\widetilde{\Theta}(t) \approx \epsilon \cdot t^{-w} \widetilde{\Theta}(1/t)$$
 where $\widetilde{\Theta}(t) := \sum_{n \leq B} a_n \phi(nt/\sqrt{N})$

If one guesses the ϵ , then the functional equation at a point t_0 becomes

 $f_{t_0}(c) \approx 0$, with $f_{t_0} \in \mathbb{R}[c_1, \dots, c_d]$

where *c* are the coefficients of the unknown Euler factors. In other words, we are trying to solve

$$0 \stackrel{?}{\approx} \min_{c \in riangle \cap \mathbb{Z}^d} |f_{t_0}(x)|, \quad ext{where} \quad riangle ext{ is a polytope}$$

One can solve this problem in several ways

• Search: looping over all the possible unknown Euler factors. 🤠

$$\widetilde{\Theta}(t) \approx \epsilon \cdot t^{-w} \widetilde{\Theta}(1/t) \quad \text{where} \quad \widetilde{\Theta}(t) := \sum_{n \leq B} a_n \phi(nt/\sqrt{N})$$

If one guesses the ϵ , then the functional equation at a point t_0 becomes

 $f_{t_0}(c) \approx 0$, with $f_{t_0} \in \mathbb{R}[c_1, \ldots, c_d]$

where c are the coefficients of the unknown Fuler factors. In other words, we are trying to solve

$$0 \stackrel{?}{\approx} \min_{c \in riangle \cap \mathbb{Z}^d} |f_{t_0}(x)|, \quad ext{where} \quad riangle ext{ is a polytope}$$

One can solve this problem in several ways

- Search: looping over all the possible unknown Euler factors.
- Minimize: solve the mixed-integer programming problem. 🤔

$$\widetilde{\Theta}(t) \approx \epsilon \cdot t^{-w} \widetilde{\Theta}(1/t) \quad \text{where} \quad \widetilde{\Theta}(t) := \sum_{n \leq \mathsf{B}} a_n \phi(nt/\sqrt{\mathsf{N}})$$

If one guesses the ϵ , then the functional equation at a point t_0 becomes

 $f_{t_0}(c) \approx 0$, with $f_{t_0} \in \mathbb{R}[c_1, \dots, c_d]$

where c are the coefficients of the unknown Euler factors.

In other words, we are trying to solve

$$0 \stackrel{?}{\approx} \min_{c \in riangle \cap \mathbb{Z}^d} |f_{t_0}(x)|, \quad ext{where} \quad riangle ext{ is a polytope.}$$

One can solve this problem in several ways

- Search: looping over all the possible unknown Euler factors. 🤠
- Minimize: solve the mixed-integer programming problem. 🤔
- Linearize: compute several f_{t_i} and treat each monomial as an unknown. 🤯

Trinomial motives

We consider a sequence of hypergeometric families where we can readily compute conductors.

- Fix p, w > 0 and $0 \le r < w$; let m > 0 vary, prime to p.
- Set $a = mp^w$, $b = mp^r$ and $c = m(p^w p^r)$.
- Hypergeometric motive with γ -vector [-a, b, c] is weight zero, with model

$$a^a x^b (1-x)^c - b^b c^c z.$$

Substitute $z = up^k$ to get number field K, decompose $K \otimes \mathbb{Q}_p$ as $K_1 \oplus \cdots \oplus K_n$ with residue degrees f_1, \ldots, f_n . Compute $\alpha = v_p(\Delta(K)) - a + \sum f_i$, the Swan conductor of K at p.

- Plot $(k/c, \alpha/c)$.
- Varying *m* corresponds to substituting fractional powers of *p*.

Trinomial picture (p=2, w=2, r=0)

- x-axis is k/c, where $k = v_p(z)$.
- y-axis is α/c , where α is the Swan conductor at p.
- Top line is the "ramp," where (k, p) = 1.

Wild Euler factors of [1, 2, 4]-families

[1,2,4]-families Hypergeometric families with $\alpha_i, \beta_j \in \{1, 1/2, 1/4, 3/4\}.$

- \cdot The only wild prime is 2.
- Assume $k = v_2(z) \neq 0$ and $\sigma(k)$ denote the unscaled ramp as a function of k. Then $\sigma(k)$ is a conjectured upper bound on $c_2 = v_2(N)$.
- Let n_1 denote the number of 1s in α or β , whichever is higher.

Kloosterman polynomials

For each $n \ge 1$, consider the hypergeometric family defined by the *n*-tuples $\alpha = (1/2, \ldots, 1/2), \beta = (1, \ldots, 1)$. Let $z = 2^{2n}$. The Euler factor at 2 of the motive $M_z^{\alpha,\beta}$ is the Kloosterman polynomial of degree $n_1 = n$.

Predictions and data

Let $M_z^{\alpha,\beta}$ be a hypergeometric motive in a [1,2,4]-family, and $k = v_2(z)$.

Predictions about $L_2(T)$ and c_2 (Erasing principle + degenerations at $0,\infty$)

- If $2 \nmid k$, then $L_2(T) = 1$ and $c_2 = \sigma(k)$.
- \cdot If $2 \mid k$, then
 - 1. At bottom of ramp, either $L_2(T)$ is the Kloosterman polynomial of degree n_1 with a 2-power twist factor related to the weight, or $c_2 = 0$.
 - 2. On low plateau, $L_2(T) = 1$ or a product of at most two polys of the form $1 2^i T$.
 - 3. On high plateau, $L_2(T) = 1$ or of the form $1 2^i T$.

Computed data for $M_z^{\alpha,\beta}$ with degree ≤ 7 and $z = \pm 2^k$ for different positions k wrt the ramp. They match predictions. A few exceptions possibly due to: poles, $c_2 = 0$.

Example

$$\alpha = (1, 1, \frac{1}{2}, \frac{1}{2}), \beta = (\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}), z = 2^{-8}$$
. Predicted $L_2(T)$ is $1 + T + 2T^2$.
It turns out that $c_2 = 0$ and $L_2(T) = (1 + T + 2T^2)^2$.

12/12