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From Elliptic Curves to K3 Surfaces: an Analogy🗺️

Feature Elliptic curve E/Q K3 surface X/Q
Dimension 1 2
Motive of interest H1(E) T(X) ( H2(X) ∼Q NS(X)⊕ T(X) ' Z22

Weight 1 2
Dimension 2 dimT(X) = 22− dimNS(X) ∈ [2, 21]
L-function degree 2 dimT(X) = 22− dimNS(X)
Endomorphisms End(EQal)Q = Q or CM field EndHdg(T(X))Q = RM or CM field
Modularity status proved (Wiles et al.) open except dimT(X) is small or CM

In general, if dimEndHdg M = dimM, then for some algebraic Hecke quasi-character ψM

L(M, s) = L(s, ψM).

Question
Can we make modularity explicit for K3s with complex multiplication?

Today: three examples with dimT(X) = 6 and EndHdg(T(X))Q is a sextic CM field.
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The Protagonists: Three degree 2 K3 surfaces with suspicious endomorphisms🔎

• Three double covers of P2

X1:w2 = x y z (x3 − 3xy2 + y3 − 3x2z − 3xyz + 9y2z + 6yz2 + z3)
X2:w2 = x y z (7x3 − 7x2y + y3 + 49x2z − 21xyz − 7y2z + 98xz2 + 49z3)

X3:w2 = x y z
(
49x3 − 304x2y + 361xy2 + 361y3 + 570x2z − 2793xyz

+2888y2z + 2033xz2 − 5415yz2 + 2299z3

)

• The right hand side factors as the product of six general lines in P2.
• Blowing up the 15 double points yields a smooth K3 with

rk NS Xi = 1+ 15, dimT(Xi) = 22− 16 = 6.

• Period matrix of Xi  strong evidence of CM by a cyclic sextic field Ki.
Q(ζ9 + ζ−19 ,

√
−1) '6.0.419904.1 Q(ζ7 + ζ−17 ,

√
−1) ' 6.0.153664.1 6.0.59105344.1

• The lines are defined over the unique (real) cubic subfield.

https://www.lmfdb.org/NumberField/6.0.419904.1
https://www.lmfdb.org/NumberField/6.0.153664.1
http://www.lmfdb.org/NumberField/6.0.59105344.1
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The Accomplices: Four Hyperelliptic Curves with CM👀

Question

Can we construct a CM abelian threefold attached to these fields? 🕵️

Yes, we can!

Theorem (Weng + C-Mascot-Sijsling-Voight)
We have End(Jac(Ci))Q ' Ki, where
i Q(

√
−1) ⊂ Ki Defining equation for Ci

1 Q(ζ9 + ζ−19 ,
√
−1) ' 6.0.419904.1 y2 = x7 + 6x5 + 9x3 + x

2 Q(ζ7 + ζ−17 ,
√
−1) ' 6.0.153664.1 y2 = x7 + 7x5 + 14x3 + 7x

3 6.0.8340544.1 y2 = x7 + 1786x5 + 44441x3 + 278179x
4 6.0.59105344.1 y2 = x7 + 961x5 − 3694084x3 + 1832265664x

https://www.lmfdb.org/NumberField/6.0.419904.1
https://www.lmfdb.org/NumberField/6.0.153664.1
https://www.lmfdb.org/NumberField/6.0.8340544.1
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Main Theorem: Matching Modularity🧩

Theorem (C–Elsenhans–Jahnel–Voight)
For i = 1, 2, 3, let X = Xi and let K be the predicted sextic CM field. and F ⊆ K the unique
cubic subfield.
🔍 If TQ(X) has CM by K , for an explicit character ψX with∞–type {(0, 2), (1, 1), (1, 1)} and

for all primes ` we have

ρT(X),` ' Ind
GalQ
GalK

ψX L(T(X), s) = L(s, ψX).

👀 Let A = Jac(Ci). For an explicit character ψA of∞–type {(0, 1), (0, 1), (0, 1)} and for all
primes ` we have

ρH1(A),` ' Ind
GalQ
GalK

L(H1(A), s) = L(s, ψA).

💥 We have
ρH2(A),` ' Ind

GalQ
GalF

Q`(1)⊕ Ind
GalQ
GalK

(ψX ⊕ ψ′)

L(H2(A), s) = ζF(s+ 1)L(s, ψX)L(s, ψ′),

where ψ′ is of∞-type {(0, 2), (0, 2), (1, 1)}.
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How We Pin Down ψX: A Four Step Detective Story🕵️

1. Bad primes of Xi: when do the 6 lines are no longer in general position?

2. Conductor bound: what are the maximum exponents such that Q(ψ) ⊆ Ki?
3. Enumerate all the characters ψ with the required∞-type and bounded conductor.
4. Match Euler factors: compute characteristic polynomials of Frobenius on T(Xi) for
split primes p < 250; unique match singles out ψXi (and similarly ψAi ).

1. For X3, the bad primes are {2, 7, 11, 19}
2. We must consider N up to p72 · 7 · 11 · p19, where pp is the unique prime dividing p.
3. Must consider groups as large as

(Z/4Z)5 ⊕ (Z/8Z)2 ⊕ (Z/24Z)2 ⊕ Z/48Z⊕ (Z/240Z)3 ⊕ Z/5040Z

4. We have N = p22 · p19 and it is the unique character with that conductor such that
Lp(ψXi , T) = 1+ 14T − 5pT2 − 28p2T3 − 5p3T4 + 14p4T5 + p6T6 for p = 37.

5. This example took about 180h (all the others took less than a minute).
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What We Gain and What’s Next🔑

• Matching: three explicit K3 with putative CM to explicit algebraic Hecke
quasi-characters.

• Symmetric square relation: ψX | Sym2 ψA  strongly suggests that X and A are
related via the Kuga–Satake construction (up to isogeny and powers), i.e.,

T(X) ⊂ H1(A)⊗ H1(A)

• A fourth Hyperelliptic curve with CM lacks a K3 example, but the characters still exist!
CM field has class group C2 × C2. Does this obstruct definition over Q?

Questions?
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related via the Kuga–Satake construction (up to isogeny and powers), i.e.,
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