Explicit modularity of K3 surfaces with CM of large degree

Edgar Costa (MIT) July 8, 2025, ICERM

Slides available at **edgarcosta.org**. Joint work with Andreas-Stephan Elsenhans, Jörg Jahnel, John Voight

Feature	Elliptic curve E/\mathbb{Q}	K3 surface X/\mathbb{Q}
Dimension	1	2
Motive of interest	$H^{1}(E)$	$T(X) \subsetneq H^2(X) \sim_{\mathbb{Q}} \mathrm{NS}(X) \oplus T(X) \simeq \mathbb{Z}^{22}$

Elliptic curve E/\mathbb{Q}	K3 surface X/\mathbb{Q}
1	2
$H^1(E)$	$T(X) \subsetneq H^2(X) \sim_{\mathbb{Q}} \mathrm{NS}(X) \oplus T(X) \simeq \mathbb{Z}^{22}$
1	2
2	dim T(X) = $22 - \dim NS(X) \in [2, 21]$
2	$\dim T(X) = 22 - \dim \operatorname{NS}(X)$
	Elliptic curve E/\mathbb{Q} 1 H ¹ (E) 1 2 2

Elliptic curve E/\mathbb{Q}	K3 surface X/\mathbb{Q}
1	2
$H^1(E)$	$T(X) \subsetneq H^2(X) \sim_{\mathbb{Q}} \mathrm{NS}(X) \oplus T(X) \simeq \mathbb{Z}^{22}$
1	2
2	$\dim T(X) = 22 - \dim \mathrm{NS}(X) \in [2, 21]$
2	$\dim T(X) = 22 - \dim \mathrm{NS}(X)$
$\operatorname{End}(\mathcal{E}_{\mathbb{Q}^{al}})_{\mathbb{Q}}=\mathbb{Q}$ or CM field	$\operatorname{End}_{\operatorname{Hdg}}(T(X))_{\mathbb{Q}} = RM \text{ or } CM \text{ field}$
	Elliptic curve E/\mathbb{Q} 1 H ¹ (E) 1 2 2 End($E_{\mathbb{Q}^{al}}$) $_{\mathbb{Q}} = \mathbb{Q}$ or CM field

Feature	Elliptic curve E/\mathbb{Q}	K3 surface X/\mathbb{Q}
Dimension	1	2
Motive of interest	$H^1(E)$	$T(X) \subsetneq H^2(X) \sim_{\mathbb{Q}} \mathrm{NS}(X) \oplus T(X) \simeq \mathbb{Z}^{22}$
Weight	1	2
Dimension	2	$\dim T(X) = 22 - \dim \mathrm{NS}(X) \in [2, 21]$
L-function degree	2	$\dim T(X) = 22 - \dim \mathrm{NS}(X)$
Endomorphisms	$\operatorname{End}(E_{\mathbb{Q}^{al}})_{\mathbb{Q}}=\mathbb{Q}$ or CM field	$\operatorname{End}_{\operatorname{Hdg}}(T(X))_{\mathbb{Q}} = RM$ or CM field
Modularity status	proved (Wiles et al.)	open except dim T(X) is small or CM

Feature	Elliptic curve E/\mathbb{Q}	K3 surface X/\mathbb{Q}
Dimension	1	2
Motive of interest	$H^1(E)$	$T(X) \subsetneq H^2(X) \sim_{\mathbb{Q}} \mathrm{NS}(X) \oplus T(X) \simeq \mathbb{Z}^{22}$
Weight	1	2
Dimension	2	$\dim T(X) = 22 - \dim \mathrm{NS}(X) \in [2, 21]$
L-function degree	2	$\dim T(X) = 22 - \dim \mathrm{NS}(X)$
Endomorphisms	$\operatorname{End}(\mathit{E}_{\mathbb{Q}^{al}})_{\mathbb{Q}}=\mathbb{Q}$ or CM field	$\operatorname{End}_{\operatorname{Hdg}}(T(X))_{\mathbb{Q}}=RM$ or CM field
Modularity status	proved (Wiles et al.)	open except dim T(X) is small or CM

In general, if dim $\operatorname{End}_{\operatorname{Hdg}} M = \dim M$, then for some algebraic Hecke quasi-character ψ_M

 $L(M,s) = L(s,\psi_M).$

Feature	Elliptic curve E/\mathbb{Q}	K3 surface X/\mathbb{Q}
Dimension	1	2
Motive of interest	$H^1(E)$	$T(X) \subsetneq H^2(X) \sim_{\mathbb{Q}} \mathrm{NS}(X) \oplus T(X) \simeq \mathbb{Z}^{22}$
Weight	1	2
Dimension	2	$\dim T(X) = 22 - \dim \mathrm{NS}(X) \in [2, 21]$
L-function degree	2	$\dim T(X) = 22 - \dim \mathrm{NS}(X)$
Endomorphisms	$\operatorname{End}(E_{\mathbb{Q}^{al}})_{\mathbb{Q}}=\mathbb{Q}$ or CM field	$\operatorname{End}_{\operatorname{Hdg}}(T(X))_{\mathbb{Q}}=RM$ or CM field
Modularity status	proved (Wiles et al.)	open except dim T(X) is small or CM

In general, if dim $\operatorname{End}_{\operatorname{Hdg}} M = \dim M$, then for some algebraic Hecke quasi-character ψ_M

 $L(M, s) = L(s, \psi_M).$

Question

Can we make modularity explicit for K3s with complex multiplication?

Feature	Elliptic curve E/\mathbb{Q}	K3 surface X/\mathbb{Q}
Dimension	1	2
Motive of interest	$H^1(E)$	$T(X) \subsetneq H^2(X) \sim_{\mathbb{Q}} \mathrm{NS}(X) \oplus T(X) \simeq \mathbb{Z}^{22}$
Weight	1	2
Dimension	2	$\dim T(X) = 22 - \dim \mathrm{NS}(X) \in [2, 21]$
L-function degree	2	$\dim T(X) = 22 - \dim \mathrm{NS}(X)$
Endomorphisms	$\operatorname{End}(E_{\mathbb{Q}^{\operatorname{al}}})_{\mathbb{Q}}=\mathbb{Q}$ or CM field	$\operatorname{End}_{\operatorname{Hdg}}(T(X))_{\mathbb{Q}}=RM$ or CM field
Modularity status	proved (Wiles et al.)	open except dim T(X) is small or CM

In general, if dim $\operatorname{End}_{\operatorname{Hdg}} M = \dim M$, then for some algebraic Hecke quasi-character ψ_M

 $L(M, s) = L(s, \psi_M).$

Question

Can we make modularity explicit for K3s with complex multiplication?

Today: three examples with dim T(X) = 6 and $End_{Hdg}(T(X))_{\mathbb{Q}}$ is a sextic CM field.

The Protagonists: Three degree 2 K3 surfaces with suspicious endomorphisms 🔎

• Three double covers of \mathbb{P}^2

$$X_{1}: w^{2} = x y z (x^{3} - 3xy^{2} + y^{3} - 3x^{2}z - 3xyz + 9y^{2}z + 6yz^{2} + z^{3})$$

$$X_{2}: w^{2} = x y z (7x^{3} - 7x^{2}y + y^{3} + 49x^{2}z - 21xyz - 7y^{2}z + 98xz^{2} + 49z^{3})$$

$$X_{3}: w^{2} = x y z \begin{pmatrix} 49x^{3} - 304x^{2}y + 361xy^{2} + 361y^{3} + 570x^{2}z - 2793xyz \\ +2888y^{2}z + 2033xz^{2} - 5415yz^{2} + 2299z^{3} \end{pmatrix}$$

The Protagonists: Three degree 2 K3 surfaces with suspicious endomorphisms 🔎

 \cdot Three double covers of \mathbb{P}^2

$$X_{1}: w^{2} = x y z (x^{3} - 3xy^{2} + y^{3} - 3x^{2}z - 3xyz + 9y^{2}z + 6yz^{2} + z^{3})$$

$$X_{2}: w^{2} = x y z (7x^{3} - 7x^{2}y + y^{3} + 49x^{2}z - 21xyz - 7y^{2}z + 98xz^{2} + 49z^{3})$$

$$X_{3}: w^{2} = x y z \begin{pmatrix} 49x^{3} - 304x^{2}y + 361xy^{2} + 361y^{3} + 570x^{2}z - 2793xyz \\ +2888y^{2}z + 2033xz^{2} - 5415yz^{2} + 2299z^{3} \end{pmatrix}$$

- The right hand side factors as the product of six general lines in \mathbb{P}^2 .
- Blowing up the 15 double points yields a smooth K3 with

$$\operatorname{rk} \operatorname{NS} X_i = 1 + 15, \quad \operatorname{dim} \mathsf{T}(X_i) = 22 - 16 = 6.$$

The Protagonists: Three degree 2 K3 surfaces with suspicious endomorphisms 🔎

 \cdot Three double covers of \mathbb{P}^2

$$X_{1}: w^{2} = x y z (x^{3} - 3xy^{2} + y^{3} - 3x^{2}z - 3xyz + 9y^{2}z + 6yz^{2} + z^{3})$$

$$X_{2}: w^{2} = x y z (7x^{3} - 7x^{2}y + y^{3} + 49x^{2}z - 21xyz - 7y^{2}z + 98xz^{2} + 49z^{3})$$

$$X_{3}: w^{2} = x y z \begin{pmatrix} 49x^{3} - 304x^{2}y + 361xy^{2} + 361y^{3} + 570x^{2}z - 2793xyz \\ +2888y^{2}z + 2033xz^{2} - 5415yz^{2} + 2299z^{3} \end{pmatrix}$$

- The right hand side factors as the product of six general lines in \mathbb{P}^2 .
- Blowing up the 15 double points yields a smooth K3 with

$$\operatorname{rk} \operatorname{NS} X_i = 1 + 15,$$
 $\dim \mathsf{T}(X_i) = 22 - 16 = 6.$

• Period matrix of $X_i \rightsquigarrow$ strong evidence of CM by a cyclic sextic field K_i .

 $\mathbb{Q}(\zeta_9 + \zeta_9^{-1}, \sqrt{-1}) \simeq 6.0.419904.1 \quad \mathbb{Q}(\zeta_7 + \zeta_7^{-1}, \sqrt{-1}) \simeq 6.0.153664.1 \quad 6.0.59105344.1$

• The lines are defined over the unique (real) cubic subfield.

The Accomplices: Four Hyperelliptic Curves with CM 👀

Question

Can we construct a CM abelian threefold attached to these fields? 🏛

Question

Can we construct a CM abelian threefold attached to these fields? 🕱

Yes, we can!

 Theorem (Weng + C-Mascot-Sijsling-Voight)

 We have End(Jac(C_i))_Q $\simeq K_i$, where

 i
 $\mathbb{Q}(\sqrt{-1}) \subset K_i$ Defining equation for C_i

 1
 $\mathbb{Q}(\zeta_9 + \zeta_9^{-1}, \sqrt{-1}) \simeq 6.0.419904.1$ $y^2 = x^7 + 6x^5 + 9x^3 + x$

 2
 $\mathbb{Q}(\zeta_7 + \zeta_7^{-1}, \sqrt{-1}) \simeq 6.0.153664.1$ $y^2 = x^7 + 7x^5 + 14x^3 + 7x$

 3
 - - -

 4
 - - -

 $y^2 = x^7 + 1786x^5 + 44441x^3 + 278179x$ $y^2 = x^7 + 961x^5 - 3694084x^3 + 1832265664x$

Main Theorem: Matching Modularity 🖈

Theorem (C-Elsenhans-Jahnel-Voight)

For i = 1, 2, 3, let $X = X_i$ and let K be the predicted sextic CM field. and $F \subseteq K$ the unique cubic subfield.

G If T_Q(X) has CM by K, for an explicit character ψ_X with ∞-type {(0, 2), (1, 1), (1, 1)} and for all primes ℓ we have

$$p_{\mathsf{T}(X),\ell} \simeq \mathsf{Ind}_{\mathsf{Gal}_{\mathcal{K}}}^{\mathsf{Gal}_{\mathbb{Q}}} \psi_X \qquad L(\mathsf{T}(X),\mathsf{s}) = L(\mathsf{s},\psi_X).$$

Main Theorem: Matching Modularity 🖈

Theorem (C-Elsenhans-Jahnel-Voight)

For i = 1, 2, 3, let $X = X_i$ and let K be the predicted sextic CM field. and $F \subseteq K$ the unique cubic subfield.

G If T_Q(X) has CM by K, for an explicit character ψ_X with ∞-type {(0, 2), (1, 1), (1, 1)} and for all primes ℓ we have

$$\rho_{\mathsf{T}(X),\ell} \simeq \mathsf{Ind}_{\mathsf{Gal}_{K}}^{\mathsf{Gal}_{\mathbb{Q}}} \psi_{X} \qquad L(\mathsf{T}(X),s) = L(s,\psi_{X}).$$

● Let $A = Jac(C_i)$. For an explicit character ψ_A of ∞ -type {(0, 1), (0, 1), (0, 1)} and for all primes ℓ we have

$$\rho_{\mathsf{H}^{1}(\mathsf{A}),\ell} \simeq \mathsf{Ind}_{\mathsf{Gal}_{\mathcal{K}}}^{\mathsf{Gal}_{\mathbb{Q}}} \qquad L(\mathsf{H}^{1}(\mathsf{A}),s) = L(s,\psi_{\mathsf{A}}).$$

Main Theorem: Matching Modularity 🖈

Theorem (C-Elsenhans-Jahnel-Voight)

For i = 1, 2, 3, let $X = X_i$ and let K be the predicted sextic CM field. and $F \subseteq K$ the unique cubic subfield.

G If T_Q(X) has CM by K, for an explicit character ψ_X with ∞-type {(0, 2), (1, 1), (1, 1)} and for all primes ℓ we have

$$\rho_{\mathsf{T}(X),\ell} \simeq \mathsf{Ind}_{\mathsf{Gal}_{\mathsf{K}}}^{\mathsf{Gal}_{\mathbb{Q}}} \psi_X \qquad L(\mathsf{T}(X),s) = L(s,\psi_X).$$

● Let $A = Jac(C_i)$. For an explicit character ψ_A of ∞ -type {(0, 1), (0, 1), (0, 1)} and for all primes ℓ we have

$$\rho_{\mathsf{H}^{1}(\mathsf{A}),\ell} \simeq \mathsf{Ind}_{\mathsf{Gal}_{\mathcal{K}}}^{\mathsf{Gal}_{\mathbb{Q}}} \qquad L(\mathsf{H}^{1}(\mathsf{A}),s) = L(s,\psi_{\mathsf{A}}).$$

💥 We have

$$\begin{split} \rho_{\mathsf{H}^2(\mathsf{A}),\ell} &\simeq \mathsf{Ind}_{\mathsf{Gal}_{\mathsf{F}}}^{\mathsf{Gal}_{\mathbb{Q}}} \, \mathbb{Q}_{\ell}(1) \oplus \mathsf{Ind}_{\mathsf{Gal}_{\mathsf{K}}}^{\mathsf{Gal}_{\mathbb{Q}}}(\psi_{\mathsf{X}} \oplus \psi' \\ \mathcal{L}(\mathsf{H}^2(\mathsf{A}),\mathsf{s}) &= \zeta_{\mathsf{F}}(\mathsf{s}+1)\mathcal{L}(\mathsf{s},\psi_{\mathsf{X}})\mathcal{L}(\mathsf{s},\psi'), \end{split}$$

where ψ' is of ∞ -type {(0,2), (0,2), (1,1)}.

How We Pin Down ψ_X : A Four Step Detective Story 🧱

1. Bad primes of X_i: when do the 6 lines are no longer in general position?

How We Pin Down ψ_{χ} : A Four Step Detective Story 🐹

1. Bad primes of X_i: when do the 6 lines are no longer in general position?

1. For X_3 , the bad primes are {2, 7, 11, 19}

How We Pin Down ψ_{χ} : A Four Step Detective Story 🐹

- 1. Bad primes of X_i : when do the 6 lines are no longer in general position?
- 2. Conductor bound: what are the maximum exponents such that $\mathbb{Q}(\psi) \subseteq K_i$?

1. For X_3 , the bad primes are $\{2, 7, 11, 19\}$

How We Pin Down ψ_{χ} : A Four Step Detective Story 🧱

- 1. Bad primes of X_i : when do the 6 lines are no longer in general position?
- 2. Conductor bound: what are the maximum exponents such that $\mathbb{Q}(\psi) \subseteq K_i$?

- 1. For *X*₃, the bad primes are {2, 7, 11, 19}
- 2. We must consider \mathfrak{N} up to $\mathfrak{p}_2^7 \cdot 7 \cdot 11 \cdot \mathfrak{p}_{19}$, where \mathfrak{p}_p is the unique prime dividing p.

How We Pin Down ψ_{χ} : A Four Step Detective Story 🕱

- 1. Bad primes of X_i : when do the 6 lines are no longer in general position?
- 2. Conductor bound: what are the maximum exponents such that $\mathbb{Q}(\psi) \subseteq K_i$?
- 3. Enumerate all the characters ψ with the required ∞ -type and bounded conductor.

- 1. For *X*₃, the bad primes are {2, 7, 11, 19}
- 2. We must consider \mathfrak{N} up to $\mathfrak{p}_2^7 \cdot 7 \cdot 11 \cdot \mathfrak{p}_{19}$, where \mathfrak{p}_p is the unique prime dividing p.

How We Pin Down ψ_{χ} : A Four Step Detective Story 😹

- 1. Bad primes of X_i : when do the 6 lines are no longer in general position?
- 2. Conductor bound: what are the maximum exponents such that $\mathbb{Q}(\psi) \subseteq K_i$?
- 3. Enumerate all the characters ψ with the required ∞ -type and bounded conductor.

- 1. For X_3 , the bad primes are $\{2, 7, 11, 19\}$
- 2. We must consider \mathfrak{N} up to $\mathfrak{p}_2^7 \cdot 7 \cdot 11 \cdot \mathfrak{p}_{19}$, where \mathfrak{p}_p is the unique prime dividing p.
- 3. Must consider groups as large as

 $(\mathbb{Z}/4\mathbb{Z})^5 \oplus (\mathbb{Z}/8\mathbb{Z})^2 \oplus (\mathbb{Z}/24\mathbb{Z})^2 \oplus \mathbb{Z}/48\mathbb{Z} \oplus (\mathbb{Z}/240\mathbb{Z})^3 \oplus \mathbb{Z}/5040\mathbb{Z}$

How We Pin Down ψ_{χ} : A Four Step Detective Story 🧱

- 1. Bad primes of X_i : when do the 6 lines are no longer in general position?
- 2. Conductor bound: what are the maximum exponents such that $\mathbb{Q}(\psi) \subseteq K_i$?
- 3. Enumerate all the characters ψ with the required ∞ -type and bounded conductor.
- 4. Match Euler factors: compute characteristic polynomials of Frobenius on $T(X_i)$ for split primes p < 250; unique match singles out ψ_{X_i} (and similarly ψ_{A_i}).
- 1. For X_3 , the bad primes are $\{2, 7, 11, 19\}$
- 2. We must consider \mathfrak{N} up to $\mathfrak{p}_2^7 \cdot 7 \cdot 11 \cdot \mathfrak{p}_{19}$, where \mathfrak{p}_p is the unique prime dividing p.
- 3. Must consider groups as large as

 $(\mathbb{Z}/4\mathbb{Z})^5 \oplus (\mathbb{Z}/8\mathbb{Z})^2 \oplus (\mathbb{Z}/24\mathbb{Z})^2 \oplus \mathbb{Z}/48\mathbb{Z} \oplus (\mathbb{Z}/240\mathbb{Z})^3 \oplus \mathbb{Z}/5040\mathbb{Z}$

4. We have $\mathfrak{N} = \mathfrak{p}_2^2 \cdot \mathfrak{p}_{19}$ and it is the unique character with that conductor such that $L_p(\psi_{X_i}, T) = 1 + 14T - 5pT^2 - 28p^2T^3 - 5p^3T^4 + 14p^4T^5 + p^6T^6$ for p = 37.

How We Pin Down ψ_{χ} : A Four Step Detective Story 🧱

- 1. Bad primes of X_i : when do the 6 lines are no longer in general position?
- 2. Conductor bound: what are the maximum exponents such that $\mathbb{Q}(\psi) \subseteq K_i$?
- 3. Enumerate all the characters ψ with the required ∞ -type and bounded conductor.
- 4. Match Euler factors: compute characteristic polynomials of Frobenius on $T(X_i)$ for split primes p < 250; unique match singles out ψ_{X_i} (and similarly ψ_{A_i}).
- 1. For X_3 , the bad primes are $\{2, 7, 11, 19\}$
- 2. We must consider \mathfrak{N} up to $\mathfrak{p}_2^7 \cdot 7 \cdot 11 \cdot \mathfrak{p}_{19}$, where \mathfrak{p}_p is the unique prime dividing p.
- 3. Must consider groups as large as

 $(\mathbb{Z}/4\mathbb{Z})^5 \oplus (\mathbb{Z}/8\mathbb{Z})^2 \oplus (\mathbb{Z}/24\mathbb{Z})^2 \oplus \mathbb{Z}/48\mathbb{Z} \oplus (\mathbb{Z}/240\mathbb{Z})^3 \oplus \mathbb{Z}/5040\mathbb{Z}$

- 4. We have $\mathfrak{N} = \mathfrak{p}_2^2 \cdot \mathfrak{p}_{19}$ and it is the unique character with that conductor such that $L_p(\psi_{X_i}, T) = 1 + 14T 5pT^2 28p^2T^3 5p^3T^4 + 14p^4T^5 + p^6T^6$ for p = 37.
- 5. This example took about 180h (all the others took less than a minute).

• **Matching**: three explicit K3 with putative CM to explicit algebraic Hecke quasi-characters.

- **Matching**: three explicit K3 with putative CM to explicit algebraic Hecke quasi-characters.
- Symmetric square relation: $\psi_X | \operatorname{Sym}^2 \psi_A \rightsquigarrow$ strongly suggests that X and A are related via the Kuga–Satake construction (up to isogeny and powers), i.e.,

 $\mathsf{T}(X)\subset\mathsf{H}^1(A)\otimes\mathsf{H}^1(A)$

- **Matching**: three explicit K3 with putative CM to explicit algebraic Hecke quasi-characters.
- Symmetric square relation: $\psi_X | \operatorname{Sym}^2 \psi_A \rightsquigarrow$ strongly suggests that X and A are related via the Kuga–Satake construction (up to isogeny and powers), i.e.,

 $\mathsf{T}(X)\subset\mathsf{H}^1(A)\otimes\mathsf{H}^1(A)$

• A fourth Hyperelliptic curve with CM lacks a K3 example, but the characters still exist! CM field has class group $C_2 \times C_2$. Does this obstruct definition over \mathbb{Q} ?

- **Matching**: three explicit K3 with putative CM to explicit algebraic Hecke quasi-characters.
- Symmetric square relation: $\psi_X | \operatorname{Sym}^2 \psi_A \rightsquigarrow$ strongly suggests that X and A are related via the Kuga–Satake construction (up to isogeny and powers), i.e.,

 $\mathsf{T}(X)\subset\mathsf{H}^1(A)\otimes\mathsf{H}^1(A)$

• A fourth Hyperelliptic curve with CM lacks a K3 example, but the characters still exist! CM field has class group $C_2 \times C_2$. Does this obstruct definition over \mathbb{Q} ?

Questions?