Explicit modularity of K3 surfaces with CM of large degree

Edgar Costa (MIT)
July 8, 2025, ICERM

Slides available at edgarcosta.org.
Joint work with Andreas-Stephan Elsenhans, Jorg Jahnel, John Voight


edgarcosta.org

From Elliptic Curves to K3 Surfaces: an Analogy k&

Feature Elliptic curve £/Q K3 surface X/Q
Dimension 1 2
Motive of interest | H'(E) T(X) € HA(X) ~q NS(X) ® T(X) ~ Z?




From Elliptic Curves to K3 Surfaces: an Analogy k&

Feature Elliptic curve £/Q K3 surface X/Q

Dimension 1 2

Motive of interest | H'(E) T(X) € H*(X) ~q@ NS(X) ® T(X) =~ Z*?
Weight 1 2

Dimension 2 dim T(X) = 22 — dim NS(X) € [2,21]

L-function degree | 2 dim T(X) = 22 — dim NS(X)




From Elliptic Curves to K3 Surfaces: an Analogy k&

Feature Elliptic curve £/Q K3 surface X/Q

Dimension 1 2

Motive of interest | H'(E) T(X) € HA(X) ~q NS(X) ® T(X) ~ Z?
Weight 1 2

Dimension 2 dim T(X) = 22 — dim NS(X) € [2,21]

L-function degree | 2 dim T(X) = 22 — dim NS(X)
Endomorphisms | End(Ega)g = Q or CM field  Endpgg(T(X))g = RM or CM field




From Elliptic Curves to K3 Surfaces: an Analogy k&

Feature Elliptic curve £/Q K3 surface X/Q

Dimension 1 2

Motive of interest | H'(E) T(X) € H*(X) ~q@ NS(X) ® T(X) =~ Z*?
Weight 1 2

Dimension 2 dim T(X) = 22 — dim NS(X) € [2,21]

L-function degree | 2 dim T(X) = 22 — dim NS(X)

Endomorphisms
Modularity status

End(Eg« ) = Q or CM field
proved (Wiles et al.)

Endpag (T (X))o = RM or CM field
open except dim T(X) is small or CM



From Elliptic Curves to K3 Surfaces: an Analogy k&

Feature Elliptic curve £/Q K3 surface X/Q

Dimension 1 2

Motive of interest | H'(E) T(X) € HA(X) ~q NS(X) ® T(X) ~ Z?
Weight 1 2

Dimension 2 dim T(X) = 22 — dim NS(X) € [2,21]

L-function degree | 2 dim T(X) = 22 — dim NS(X)
Endomorphisms | End(Ega)g = Q or CM field  Endpgg(T(X))g = RM or CM field
Modularity status | proved (Wiles et al.) open except dim T(X) is small or CM

In general, if dim Enduqg M = dim M, then for some algebraic Hecke quasi-character ¢y

L(M,s) = L(s,¥nm).



From Elliptic Curves to K3 Surfaces: an Analogy k&

Feature Elliptic curve £/Q K3 surface X/Q

Dimension 1 2

Motive of interest | H'(E) T(X) € H*(X) ~q@ NS(X) ® T(X) =~ Z*?
Weight 1 2

Dimension 2 dim T(X) = 22 — dim NS(X) € [2,21]

L-function degree | 2 dim T(X) = 22 — dim NS(X)

Endomorphisms
Modularity status

End(Eg« ) = Q or CM field
proved (Wiles et al.)

Endpag (T (X))o = RM or CM field
open except dim T(X) is small or CM

In general, if dim Enduqg M = dim M, then for some algebraic Hecke quasi-character ¢y

L(M,s) = L(s,¥nm).

Question

Can we make modularity explicit for K3s with complex multiplication?



From Elliptic Curves to K3 Surfaces: an Analogy k&

Feature Elliptic curve £/Q K3 surface X/Q

Dimension 1 2

Motive of interest | H'(E) T(X) € H*(X) ~q@ NS(X) ® T(X) =~ Z*?
Weight 1 2

Dimension 2 dim T(X) = 22 — dim NS(X) € [2,21]

L-function degree | 2 dim T(X) = 22 — dim NS(X)

Endomorphisms
Modularity status

End(Eg« ) = Q or CM field
proved (Wiles et al.)

Endpag (T (X))o = RM or CM field
open except dim T(X) is small or CM

In general, if dim Enduqg M = dim M, then for some algebraic Hecke quasi-character ¢y

L(M,s) = L(s,¥nm).

Question

Can we make modularity explicit for K3s with complex multiplication?

Today: three examples with dim T(X) = 6 and Enduqg(T(X))g is a sextic CM field.



The Protagonists: Three degree 2 K3 surfaces with suspicious endomorphisms /@

- Three double covers of P?
Xiiw? =Xy z (X —3xy? +y° — 3x°2 — 3xyz + 9y’z + 6yz* + 7°)
Xo:W? = xyz(7 = 7X%y + Y2 + 49x°2 — 2Ixyz — 7y*z 4 98x2> + 4972°)

e s 49x3 — 304x°y 4 3671xy? + 361y° 4 570x°z — 2793xyz
B =0 +2888y%7 + 2033x2 — 5415y72 + 229973
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- The right hand side factors as the product of six general lines in P2
- Blowing up the 15 double points yields a smooth K3 with
rkNSX; =1+15,  dimT(X;) =22 — 16 = 6.

- Period matrix of X; ~ strong evidence of CM by a cyclic sextic field K;.

Q(¢o + ¢ ', V/—T) 6.0.4199041  Q(G7 4 ¢, v/—1) =~ 6.01536641  6.0.591053441
- The lines are defined over the unique (real) cubic subfield.
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Question

Can we construct a CM abelian threefold attached to these fields? &

Yes, we can!

Theorem (Weng + C-Mascot-Sijsling-Voight)
We have End(Jac(Ci))g =~ Kj, where

i \ Q(v-1) CK; Defining equation for C;

11 Q%+ ¢ vV—1) ~ 6.0.4199041 V=X 16X +9C + X

2| QG +¢G T, v/=T) ~6.01536641 V2 = X + 75 + 1a® + 7

3 6.0.83405441 y? = X +1786x° + 44441x3 + 278179x

4 6.0.5910534411 y2 = X7 + 961x5 — 3694084x° + 1832265664x


https://www.lmfdb.org/NumberField/6.0.419904.1
https://www.lmfdb.org/NumberField/6.0.153664.1
https://www.lmfdb.org/NumberField/6.0.8340544.1
http://www.lmfdb.org/NumberField/6.0.59105344.1
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Theorem (C-Elsenhans-Jahnel-Voight)

Fori=1,2,3, let X = X; and let K be the predicted sextic CM field. and F C K the unique
cubic subfield.

4 If To(X) has CM by K, for an explicit character x with co-type {(0,2), (1,1), (1,1)} and
for all primes ¢ we have

PT(X), = IndGa|K Wy L(T(X),S) = L(S,’l/))().
** Let A = Jac((;). For an explicit character ¢, of co-type {(0,1),(0,1),(0,1)} and for all

primes ¢ we have
G
Priay.e = Ind&  L(H'(A),s) = L(s, ¥n).

> We have Galg

sz( e = If‘ld(;::Q QZ( ) S |ndGa|K (1/’)( SY) w )
L(HZ(A)7 ) = CF(S + 1)L(San) ( 7’(/} )7
where ¢’ is of co-type {(0,2),(0,2),(1,1)}.
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1. For X5, the bad primes are {2,7,11,19}
2. We must consider 9T up to p} - 7 - 11 - pro, where pj, is the unique prime dividing p.
3. Must consider groups as large as
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A Four Step Detective Story ¥

Bad primes of X;: when do the 6 lines are no longer in general position?
Conductor bound: what are the maximum exponents such that Q(v) C K;?
Enumerate all the characters v with the required co-type and bounded conductor.

Match Euler factors: compute characteristic polynomials of Frobenius on T(X;) for
split primes p < 250; unique match singles out +x. (and similarly tx,).

For X3, the bad primes are {2,7,11,19}

2. We must consider 9T up to p} - 7 - 11 - pro, where pj, is the unique prime dividing p.
3. Must consider groups as large as

(Z/4Z) @ (Z/8Z) & (Z/24Z)* & Z/48Z & (Z/240Z) & Z/5040Z

We have 91 = p3 - pyo and it is the unique character with that conductor such that
Lp(¥x,, T) =1+ 14T — 5pT2 — 28p*T3 — 5p3T* 4 14p*T> + pbT® for p = 37.
This example took about 180h (all the others took less than a minute).
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- Matching: three explicit K3 with putative CM to explicit algebraic Hecke
quasi-characters.

- Symmetric square relation: ¢ | Sym? 14 ~» strongly suggests that X and A are
related via the Kuga-Satake construction (up to isogeny and powers), i.e.,

T(X) c H'(A) @ H'(A)

- A fourth Hyperelliptic curve with CM lacks a K3 example, but the characters still exist!
CM field has class group G, x C,. Does this obstruct definition over Q?

Questions?



