A Formalizer, a Mathematician, and a Computer Algebra System Walk into a Bar: Bridging Formal and Computational Mathematics

Edgar Costa (MIT) November 4, 2023, Simons Collaboration Meeting

Slides available at edgarcosta.org Joint work with Alex J. Best, Mario Carneiro, and James Davenport.

Question

Do I believe the output from a computer algebra system?

Question

Do I believe the output from a computer algebra system?

Theorem

The number $3 \cdot 2^{189} + 1$ is a prime number.

Theorem

The number $3 \cdot 2^{189} + 1$ is a prime number.

Since *n* is a proth number, it is enough exhibit *a* such that $a^{(n-1)/2} \equiv -1 \mod n$. There several other possible prime certificates.

Theorem

The class group of $K := \mathbb{Q}(\sqrt{5}, \sqrt{-231}) = 4.0.1334025.9$ is $C_2 \times C_2 \times C_{12}$.

```
Proof 🥕 🎩
sage: K.class group().invariants()
(12, 2, 2)
magma> Invariants(ClassGroup(K));
[ 2, 2, 12 ]
julia> class group(K)[1]
GrpAb: (Z/2)^2 \times Z/12
Proof 🦯 🗲 🎩 🗱
magma> Degree(HilbertClassField(K));
48
```

🕱 segmentation fault (core dumped)

 $C_1: y^2 + (x+1)y = x^5 + 23x^4 - 48x^3 + 85x^2 - 69x + 45$ $C_2: y^2 + xy = -x^5 + 2573x^4 + 92187x^3 + 2161654285x^2 + 406259311249x + 93951289752862$

Theorem

There is an isogeny of degree 31^2 between $Jac(C_1)$ and $Jac(C_2)$.

Proof 🥕 🎩 🛛 3h

Compute the isogeny class via Bommel-Chidambaram-Costa-Kieffer: sage -python genus2isogenies.py ...

Proof 🥕 🗲 🎩 🗱 6.5h

Produce a divisor in $C_1 \times C_2$ via Costa-Mascot-Sijsling-Voight: magma> Correspondence(C1, C2, heuristic_isogeny);

. . .

- Primality proving
- Homomorphisms between Jacobians
- LLL lattice basis reduction

- Primality proving
- Homomorphisms between Jacobians
- LLL lattice basis reduction
- 🕸 Formalize the algorithm
 - Smith and Hermite normal form
 - Factorisation over $\mathbb{Z}[x]$
 - LLL lattice basis reduction algorithm
 - Tate's algorithm

- Primality proving
- Homomorphisms between Jacobians
- LLL lattice basis reduction
- 🕸 Formalize the algorithm
 - Smith and Hermite normal form
 - Factorisation over $\mathbb{Z}[x]$
 - LLL lattice basis reduction algorithm
 - Tate's algorithm
- 🎢 By pure thought generate an alternative proof

- Primality proving
- Homomorphisms between Jacobians
- LLL lattice basis reduction
- 🕸 Formalize the algorithm
 - Smith and Hermite normal form
 - Factorisation over $\mathbb{Z}[x]$
 - LLL lattice basis reduction algorithm
 - Tate's algorithm
- 🥕 By pure thought generate an alternative proof
 - a magician never reveals their secrets

Protection $\mathbb{Z}[x]$

by Divasón–Joosten–Thiemann–Yamada

LLL lattice basis reduction algorithm

by Thiemann–Bottesch–Divasón–Haslbeck–Joosten–Yamada

🏟 Tate's algorithm (work in progress by Best–Dahmen–Huriot-Tattegrain)

- $\cdot\,$ Some of the output is out of reach to be formalized:
 - Kodaira symbol
 - Conductor exponent
 - Tamagawa number
 - ...
- They verified that the algorithm terminates under some mild assumptions
- Works in characteristic 2 and 3
- Verified output for some explicit families, e.g., $y^2 = x^3 + p$ gives I_1 for p > 5
- + Verified the local data on LMFDB ($\sim\!13$ million curves) in $\sim\!10$ minutes
- Future: show that the output is invariant under change of coordinates

The sweet spot

- \cdot 🝯 Generate bread crumbs for a certificate along the way
 - Primality testing via elliptic curves
 - Factorisation over $\mathbb{Z}[x]$
 - Class group computation?
- 🔳 Generate certificates of correctness a posteriori
 - Primality proving
 - Homomorphisms between Jacobians
 - LLL lattice basis reduction algorithm
- 🔯 Formalize the algorithm
 - Smith and Hermite normal form
 - Factorisation over $\mathbb{Z}[x]$
 - LLL lattice basis reduction algorithm
 - Tate's algorithm
- 🥕 By pure thought generate an alternative proof
 - a magician never reveals their secrets

$\overline{}$ Factorisation over $\mathbb{Z}[x]$ (Best–Carneiro–Costa–Davenport)

Theorem (Mignotte)

Take $f,g \in \mathbb{Z}[X]$, and let $n = \deg f$. If g divides f, then

$$\|g\|_{\infty} \leq \binom{n-1}{\lceil n/2 \rceil} (\|f\|_2 + lc(f)) =: B_f$$

$\overline{\mathbf{v}}$ Factorisation over $\mathbb{Z}[x]$ (Best–Carneiro–Costa–Davenport)

Theorem (Mignotte)

Take $f,g \in \mathbb{Z}[X]$, and let $n = \deg f$. If g divides f, then

$$\|g\|_{\infty} \leq \binom{n-1}{\lceil n/2 \rceil} (\|f\|_2 + lc(f)) =: B_f$$

To show that f is irreducible, is enough to give a factorization of f over $\mathbb{Z}/p^e[x]$, with $p^e > 2B_f + 1$, such that no nontrivial factor lifts as a factor of f over $\mathbb{Z}[x]$. Such factorization is free! Already part of the factorization algorithm.

${\buildrel ar {i}}$ Factorisation over ${\bar {Z}}[x]$ (Best–Carneiro–Costa–Davenport)

To show that f is irreducible, is enough to give a factorization of f over $\mathbb{Z}/p^e[x]$, with $p^e > 2B_f + 1$, such that no nontrivial factor lifts as a factor of f over $\mathbb{Z}[x]$.

Such factorization is free! Already part of the factorization algorithm.

```
Theorem

f := x^{6} - 3x^{5} + 5x^{4} - 5x^{3} + 5x^{2} - 3x + 1 \text{ is irreducible}
Proof \heartsuit

sage: f.is_irreducible()

True
```

${\buildrel ar {i}}$ Factorisation over ${\bar {Z}}[x]$ (Best–Carneiro–Costa–Davenport)

To show that f is irreducible, is enough to give a factorization of f over $\mathbb{Z}/p^e[x]$, with $p^e > 2B_f + 1$, such that no nontrivial factor lifts as a factor of f over $\mathbb{Z}[x]$.

Such factorization is free! Already part of the factorization algorithm.

Theorem $f := x^{6} - 3x^{5} + 5x^{4} - 5x^{3} + 5x^{2} - 3x + 1 \text{ is irreducible}$ Proof $\texttt{sage: f.is_irreducible()}$ True $\texttt{o over } \mathbb{Z}/3^{e}[x] \text{ f factors as } g \cdot h, \text{ with } \deg g = \deg h = 3$ $\texttt{the putative lifts to } \mathbb{Z}[x] \text{ do not divide } f$

${\buildrel ar {\mathbb Z}}$ Factorisation over ${\buildrel {\mathbb Z}}[x]$ (Best–Carneiro–Costa–Davenport)

Our goal is to build a *tactic* in lean to automatically generate such formal proofs.

${\buildrel ar {\mathbb Z}}$ Factorisation over ${\buildrel {\mathbb Z}}[x]$ (Best–Carneiro–Costa–Davenport)

Our goal is to build a *tactic* in lean to automatically generate such formal proofs. Can we do a similar thing for class group computations? 🗸