
A Formalizer, a Mathematician, and a Computer Algebra
System Walk into a Bar: Bridging Formal and Computational
Mathematics

Edgar Costa (MIT)
November 4, 2023, Simons Collaboration Meeting

Slides available at edgarcosta.org
Joint work with Alex J. Best, Mario Carneiro, and James Davenport.

edgarcosta.org

What is true?

Question
Do I believe the output from a computer algebra system?

Theorem
The number 3 · 2189 + 1 is a prime number.

Proof🪄🎩

sage: (3 * 2^189 + 1).is_prime(proof=True)
True
magma > IsPrime(3 * 2^189 + 1 : Proof:=true);
true
gp ? isprime(3 * 2^189 + 1)
%1 = 1

What is true?

Question
Do I believe the output from a computer algebra system?

Theorem
The number 3 · 2189 + 1 is a prime number.

Proof🪄🎩

sage: (3 * 2^189 + 1).is_prime(proof=True)
True
magma > IsPrime(3 * 2^189 + 1 : Proof:=true);
true
gp ? isprime(3 * 2^189 + 1)
%1 = 1

What is true?

Theorem
The number 3 · 2189 + 1 is a prime number.

Proof🪄⚡🎩💥
Take n := 3 · 2189 + 1. It is sufficient to exhibit a such that

1 /∈ {a(n−1)/2 mod n,a(n−1)/3 mod n}.

sage: n = 3 * 2^189 + 1
....: a = Zmod(n)(10)
....: 1 not in [a^((n-1)/2), a^((n-1)/3)]
True

Since n is a proth number, it is enough exhibit a such that a(n−1)/2 ≡ −1 mod n.

There several other possible prime certificates.

What is true?

Theorem
The class group of K := Q(

√
5,
√
−231) = 4.0.1334025.9 is C2 × C2 × C12.

Proof🪄🎩
sage: K.class_group().invariants()
(12, 2, 2)
magma> Invariants(ClassGroup(K));
[2, 2, 12]
julia> class_group(K)[1]
GrpAb: (Z/2)^2 x Z/12

Proof🪄⚡🎩💥
magma> Degree(HilbertClassField(K));
48
☠️ segmentation fault (core dumped)

https://www.lmfdb.org/NumberField/4.0.1334025.9

What is true?

C1 : y2 + (x + 1)y = x5 + 23x4 − 48x3 + 85x2 − 69x + 45

C2 : y2 + xy = −x5 + 2573x4 + 92187x3 + 2161654285x2 + 406259311249x + 93951289752862

Theorem
There is an isogeny of degree 312 between Jac(C1) and Jac(C2).

Proof🪄🎩 3h
Compute the isogeny class via Bommel–Chidambaram–Costa–Kieffer:
sage -python genus2isogenies.py ...

Proof🪄⚡🎩💥 6.5h
Produce a divisor in C1 × C2 via Costa–Mascot–Sijsling–Voight:
magma> Correspondence(C1, C2, heuristic_isogeny);
...

Spectrum of options

• 📜 Generate certificates of correctness a posteriori
• Primality proving
• Homomorphisms between Jacobians
• LLL lattice basis reduction

• ⚙️ Formalize the algorithm
• Smith and Hermite normal form
• Factorisation over Z[x]
• LLL lattice basis reduction algorithm
• Tate’s algorithm

• 🪄 By pure thought generate an alternative proof
• a magician never reveals their secrets

Spectrum of options

• 📜 Generate certificates of correctness a posteriori
• Primality proving
• Homomorphisms between Jacobians
• LLL lattice basis reduction

• ⚙️ Formalize the algorithm
• Smith and Hermite normal form
• Factorisation over Z[x]
• LLL lattice basis reduction algorithm
• Tate’s algorithm

• 🪄 By pure thought generate an alternative proof
• a magician never reveals their secrets

Spectrum of options

• 📜 Generate certificates of correctness a posteriori
• Primality proving
• Homomorphisms between Jacobians
• LLL lattice basis reduction

• ⚙️ Formalize the algorithm
• Smith and Hermite normal form
• Factorisation over Z[x]
• LLL lattice basis reduction algorithm
• Tate’s algorithm

• 🪄 By pure thought generate an alternative proof

• a magician never reveals their secrets

Spectrum of options

• 📜 Generate certificates of correctness a posteriori
• Primality proving
• Homomorphisms between Jacobians
• LLL lattice basis reduction

• ⚙️ Formalize the algorithm
• Smith and Hermite normal form
• Factorisation over Z[x]
• LLL lattice basis reduction algorithm
• Tate’s algorithm

• 🪄 By pure thought generate an alternative proof
• a magician never reveals their secrets

⚙️ Formalization of factorization over Z[x]732 J. Divasón et al.

Fig. 1 Runtimes compared with Mathematica and the version with no improvements

Table 2 Impact of individual optimizations

Algorithm Total runtime (%)

New 100.0

New without GCD heuristic + 1.2

New without reciprocal polynomials + 3.3

New without dynamic selection of GF(p) implementation + 15.5

New without balanced multifactor Hensel lifting + 16.7

New without Karatsuba’s multiplication algorithm + 26.7

and the horizontal axis shows the number of coefficients of the polynomial. The test suite
consists of 400 polynomials with degrees between 100 and 499 and coefficients are chosen
at random between −100 and 100.

As these polynomials have been randomly generated, they are typically irreducible. In this
case using a fast external factorization algorithm as a preprocessing step will not improve
the performance, as then the preprocessing does not modify the polynomial. We conjecture
that the situation could be alleviated by further incorporating an efficient irreducibility test.

Besides making a global comparison between the old and the new algorithm, we also
evaluate several different optimizations separately. The results are presented in Table 2,
where a row “new without opt” indicates a configuration, where only optimization opt has
been disabled in the new implementation. The time is given relative to the implementation
“new” which includes all optimizations and requires around 14min to factor all 400 example
polynomials. The table does not list all optimizations of this paper, since some of them could
not easily be disabled in the generated code. In particular, all configurations use the same
variant of the binary Hensel lifting algorithm, which considerably differs from the binary
Hensel lifting of the old implementation. The results show, that in particular the dynamic

123

by Divasón–Joosten–Thiemann–Yamada

⚙️ LLL lattice basis reduction algorithm846 R. Thiemann et al.

0 20 40 60 80 100

10−2

10−1

100

101

102

103

104

n

ti
m
e
in

s

verified
Mathematica

certified
fplll+certificate

fplll

Fig. 1 Efficiency of LLL implementations on lattices from polynomial factorization

Table 1 Execution time of LLL
implementations

Configuration Total time (in s)

verified 6006.4

Mathematica 962.0

certified 600.4

fplll+certificate 547.6

fplll 61.9

We tested values of n between 5 and 100. All experiments were run on an iMacPro with
a 3.2 GHz Intel Xeon W running macOS 10.14.3 and the results are illustrated in Fig. 1 and
Table 1. In Fig. 1, all verified results are indicated by solid marks, and all configurations
where the results are not verified are indicated with blank marks. Both the generated code
and our experimental data are available at the following website: https://doi.org/10.5281/
zenodo.2636366.

Although the verified configuration is the slowest one, it takes 6006 seconds in total on
these examples, which is a big improvement over the previous verified implementation [8],
which requires 2.6 million seconds in total. Moreover, the certified configuration based on
fplll is even faster than Mathematica, and additionally provides results that are formally
verified to be correct.

It is interesting to observe the overhead of certification. One can see that checking
the certificate is really fast, since there is only 10% difference in the runtime between
fplll+certificate and certified. Here, the fast implementation of the GSO algorithm is essen-
tial. However, producing the certificate induces quite some overhead, cf. the difference
between fplll+certificate and fplll. Finally, the experiments also clearly illustrate that our
verified algorithm cannot compete against floating-point implementations of the LLL algo-
rithm.

To summarize, in addition to having the advantage of delivering provably correct results,
both our verified and our certified implementation are usable in practice, in contrast to our
previous verified implementation. Besides efficiency, it is worth mentioning that we did not

123

by Thiemann–Bottesch–Divasón–Haslbeck–Joosten–Yamada

⚙️ Tate’s algorithm (work in progress by Best–Dahmen–Huriot-Tattegrain)

• Some of the output is out of reach to be formalized:
• Kodaira symbol
• Conductor exponent
• Tamagawa number
• ...

• They verified that the algorithm terminates under some mild assumptions
• Works in characteristic 2 and 3
• Verified output for some explicit families, e.g., y2 = x3 + p gives I1 for p > 5

• Verified the local data on LMFDB (∼13 million curves) in ∼10 minutes
• Future: show that the output is invariant under change of coordinates

The sweet spot

• 🍯 Generate bread crumbs for a certificate along the way
• Primality testing via elliptic curves
• Factorisation over Z[x]
• Class group computation?

• 📜 Generate certificates of correctness a posteriori
• Primality proving
• Homomorphisms between Jacobians
• LLL lattice basis reduction algorithm

• ⚙️ Formalize the algorithm
• Smith and Hermite normal form
• Factorisation over Z[x]
• LLL lattice basis reduction algorithm
• Tate’s algorithm

• 🪄 By pure thought generate an alternative proof
• a magician never reveals their secrets

🍯 Factorisation over Z[x] (Best–Carneiro–Costa–Davenport)

Theorem (Mignotte)
Take f ,g ∈ Z[X], and let n = deg f . If g divides f , then

‖g‖∞ ≤
(
n− 1

dn/2e

)
(‖f‖2 + lc(f)) =: Bf

To show that f is irreducible, is enough to give a factorization of f over Z/pe[x],
with pe > 2Bf + 1, such that no nontrivial factor lifts as a factor of f over Z[x].

Such factorization is free! Already part of the factorization algorithm.

Theorem
f := x6 − 3x5 + 5x4 − 5x3 + 5x2 − 3x + 1 is irreducible

Proof🍯

🖼️ sage: f.is_irreducible()
True

🔎 🎁 Over Z/3e[x] f factors as g · h, with degg = degh = 3

⚙️ the putative lifts to Z[x] do not divide f

Our goal is to build a tactic in lean to automatically generate such formal proofs.

Can we do a similar thing for class group computations? 🧸

🍯 Factorisation over Z[x] (Best–Carneiro–Costa–Davenport)

Theorem (Mignotte)
Take f ,g ∈ Z[X], and let n = deg f . If g divides f , then

‖g‖∞ ≤
(
n− 1

dn/2e

)
(‖f‖2 + lc(f)) =: Bf

To show that f is irreducible, is enough to give a factorization of f over Z/pe[x],
with pe > 2Bf + 1, such that no nontrivial factor lifts as a factor of f over Z[x].

Such factorization is free! Already part of the factorization algorithm.

Theorem
f := x6 − 3x5 + 5x4 − 5x3 + 5x2 − 3x + 1 is irreducible

Proof🍯

🖼️ sage: f.is_irreducible()
True

🔎 🎁 Over Z/3e[x] f factors as g · h, with degg = degh = 3

⚙️ the putative lifts to Z[x] do not divide f

Our goal is to build a tactic in lean to automatically generate such formal proofs.

Can we do a similar thing for class group computations? 🧸

🍯 Factorisation over Z[x] (Best–Carneiro–Costa–Davenport)

To show that f is irreducible, is enough to give a factorization of f over Z/pe[x],
with pe > 2Bf + 1, such that no nontrivial factor lifts as a factor of f over Z[x].

Such factorization is free! Already part of the factorization algorithm.

Theorem
f := x6 − 3x5 + 5x4 − 5x3 + 5x2 − 3x + 1 is irreducible

Proof🍯

🖼️ sage: f.is_irreducible()
True

🔎 🎁 Over Z/3e[x] f factors as g · h, with degg = degh = 3

⚙️ the putative lifts to Z[x] do not divide f

Our goal is to build a tactic in lean to automatically generate such formal proofs.

Can we do a similar thing for class group computations? 🧸

🍯 Factorisation over Z[x] (Best–Carneiro–Costa–Davenport)

To show that f is irreducible, is enough to give a factorization of f over Z/pe[x],
with pe > 2Bf + 1, such that no nontrivial factor lifts as a factor of f over Z[x].

Such factorization is free! Already part of the factorization algorithm.

Theorem
f := x6 − 3x5 + 5x4 − 5x3 + 5x2 − 3x + 1 is irreducible

Proof🍯

🖼️ sage: f.is_irreducible()
True

🔎 🎁 Over Z/3e[x] f factors as g · h, with degg = degh = 3

⚙️ the putative lifts to Z[x] do not divide f

Our goal is to build a tactic in lean to automatically generate such formal proofs.

Can we do a similar thing for class group computations? 🧸

🍯 Factorisation over Z[x] (Best–Carneiro–Costa–Davenport)

Theorem
f := x6 − 3x5 + 5x4 − 5x3 + 5x2 − 3x + 1 is irreducible

Proof🍯

🖼️ sage: f.is_irreducible()
True

🔎 🎁 Over Z/3e[x] f factors as g · h, with degg = degh = 3

⚙️ the putative lifts to Z[x] do not divide f

Our goal is to build a tactic in lean to automatically generate such formal proofs.

Can we do a similar thing for class group computations? 🧸

🍯 Factorisation over Z[x] (Best–Carneiro–Costa–Davenport)

Theorem
f := x6 − 3x5 + 5x4 − 5x3 + 5x2 − 3x + 1 is irreducible

Proof🍯

🖼️ sage: f.is_irreducible()
True

🔎 🎁 Over Z/3e[x] f factors as g · h, with degg = degh = 3

⚙️ the putative lifts to Z[x] do not divide f

Our goal is to build a tactic in lean to automatically generate such formal proofs.

Can we do a similar thing for class group computations? 🧸

