A Formalizer, a Mathematician, and a Computer Algebra

 System Walk into a Bar: Bridging Formal and Computational MathematicsEdgar Costa (MIT)
November 4, 2023, Simons Collaboration Meeting

Slides available at edgarcosta.org
Joint work with Alex J. Best, Mario Carneiro, and James Davenport.

What is true?

Question

Do I believe the output from a computer algebra system?

What is true?

Question

Do I believe the output from a computer algebra system?

Theorem

The number $3 \cdot 2^{189}+1$ is a prime number.

Proof/ 5

```
sage: (3 * 2^189 + 1).is_prime(proof=True)
True
magma > IsPrime(3 * 2^189 + 1 : Proof:=true);
true
gp ? isprime(3 * 2^189 + 1)
%1 = 1
```


What is true?

Theorem

The number $3 \cdot 2^{189}+1$ is a prime number.

Proof/ 玉業

Take $n:=3 \cdot 2^{189}+1$. It is sufficient to exhibit a such that

$$
1 \notin\left\{a^{(n-1) / 2} \bmod n, a^{(n-1) / 3} \bmod n\right\}
$$

sage: $n=3 * 2^{\wedge} 189+1$
....: $a=\operatorname{Zmod}(n)(10)$
....: 1 not in $\left[a^{\wedge}((n-1) / 2), a^{\wedge}((n-1) / 3)\right]$
True
Since n is a proth number, it is enough exhibit a such that $a^{(n-1) / 2} \equiv-1 \bmod n$.
There several other possible prime certificates.

What is true?

Theorem

The class group of $K:=\mathbb{Q}(\sqrt{5}, \sqrt{-231})=4.0 .1334025 .9$ is $C_{2} \times C_{2} \times C_{12}$.

Proof $\quad 5$

sage: K.class_group().invariants()
(12, 2, 2)
magma> Invariants(ClassGroup(K));
[2, 2, 12]
julia> class_group(K)[1]
GrpAb: (Z/2)^2 x Z/12

Proof 1 需

magma> Degree(HilbertClassField(K));
48
segmentation fault (core dumped)

What is true?

$C_{1}: y^{2}+(x+1) y=x^{5}+23 x^{4}-48 x^{3}+85 x^{2}-69 x+45$
$C_{2}: y^{2}+x y=-x^{5}+2573 x^{4}+92187 x^{3}+2161654285 x^{2}+406259311249 x+93951289752862$

Theorem

There is an isogeny of degree 31^{2} between $\operatorname{Jac}\left(C_{1}\right)$ and $\operatorname{Jac}\left(C_{2}\right)$.

Proof/ 5h

Compute the isogeny class via Bommel-Chidambaram-Costa-Kieffer: sage -python genus2isogenies.py ...

Proof/ 4 黄 6.5 h

Produce a divisor in $C_{1} \times C_{2}$ via Costa-Mascot-Sijsling-Voight: magma> Correspondence(C1, C2, heuristic_isogeny);

Spectrum of options

- Generate certificates of correctness a posteriori
- Primality proving
- Homomorphisms between Jacobians
- LLL lattice basis reduction

Spectrum of options

- Generate certificates of correctness a posteriori
- Primality proving
- Homomorphisms between Jacobians
- LLL lattice basis reduction
- Formalize the algorithm
- Smith and Hermite normal form
- Factorisation over $\mathbb{Z}[x]$
- LLL lattice basis reduction algorithm
- Tate's algorithm

Spectrum of options

- Generate certificates of correctness a posteriori
- Primality proving
- Homomorphisms between Jacobians
- LLL lattice basis reduction
- Formalize the algorithm
- Smith and Hermite normal form
- Factorisation over $\mathbb{Z}[x]$
- LLL lattice basis reduction algorithm
- Tate's algorithm
- / By pure thought generate an alternative proof

Spectrum of options

- Generate certificates of correctness a posteriori
- Primality proving
- Homomorphisms between Jacobians
- LLL lattice basis reduction
- Formalize the algorithm
- Smith and Hermite normal form
- Factorisation over $\mathbb{Z}[x]$
- LLL lattice basis reduction algorithm
- Tate's algorithm
- / By pure thought generate an alternative proof
- a magician never reveals their secrets

Formalization of factorization over $\mathbb{Z}[x]$

runtime in seconds

by Divasón-Joosten-Thiemann-Yamada

倠: LLL lattice basis reduction algorithm

Tate's algorithm (work in progress by Best-Dahmen-Huriot-Tattegrain)

- Some of the output is out of reach to be formalized:
- Kodaira symbol
- Conductor exponent
- Tamagawa number
-
- They verified that the algorithm terminates under some mild assumptions
- Works in characteristic 2 and 3
- Verified output for some explicit families, e.g., $y^{2}=x^{3}+p$ gives I_{1} for $p>5$
- Verified the local data on LMFDB (~ 13 million curves) in ~ 10 minutes
- Future: show that the output is invariant under change of coordinates

The sweet spot

- Generate bread crumbs for a certificate along the way
- Primality testing via elliptic curves
- Factorisation over $\mathbb{Z}[x]$
- Class group computation?
- Generate certificates of correctness a posteriori
- Primality proving
- Homomorphisms between Jacobians
- LLL lattice basis reduction algorithm
- Formalize the algorithm
- Smith and Hermite normal form
- Factorisation over $\mathbb{Z}[x]$
- LLL lattice basis reduction algorithm
- Tate's algorithm
- - By pure thought generate an alternative proof
- a magician never reveals their secrets

Factorisation over $\mathbb{Z}[x]$ (Best-Carneiro-Costa-Davenport)
Theorem (Mignotte)
Take $f, g \in \mathbb{Z}[X]$, and let $n=\operatorname{deg} f$. If g divides f, then

$$
\|g\|_{\infty} \leq\binom{ n-1}{\lceil n / 2\rceil}\left(\|f\|_{2}+l c(f)\right)=: B_{f}
$$

Factorisation over $\mathbb{Z}[x]$ (Best-Carneiro-Costa-Davenport)

Theorem (Mignotte)
Take $f, g \in \mathbb{Z}[X]$, and let $n=\operatorname{deg} f$. If g divides f, then

$$
\|g\|_{\infty} \leq\binom{ n-1}{\lceil n / 2\rceil}\left(\|f\|_{2}+l c(f)\right)=: B_{f}
$$

To show that f is irreducible, is enough to give a factorization of f over $\mathbb{Z} / p^{e}[x]$, with $p^{e}>2 B_{f}+1$, such that no nontrivial factor lifts as a factor of f over $\mathbb{Z}[x]$.

Such factorization is free! Already part of the factorization algorithm.

Factorisation over $\mathbb{Z}[x]$ (Best-Carneiro-Costa-Davenport)

To show that f is irreducible, is enough to give a factorization of f over $\mathbb{Z} / p^{e}[x]$, with $p^{e}>2 B_{f}+1$, such that no nontrivial factor lifts as a factor of f over $\mathbb{Z}[x]$.

Such factorization is free! Already part of the factorization algorithm.
Theorem

$$
f:=x^{6}-3 x^{5}+5 x^{4}-5 x^{3}+5 x^{2}-3 x+1 \text { is irreducible }
$$

Proof

E sage: f.is_irreducible()
True

Factorisation over $\mathbb{Z}[x]$ (Best-Carneiro-Costa-Davenport)

To show that f is irreducible, is enough to give a factorization of f over $\mathbb{Z} / p^{e}[x]$, with $p^{e}>2 B_{f}+1$, such that no nontrivial factor lifts as a factor of f over $\mathbb{Z}[x]$.

Such factorization is free! Already part of the factorization algorithm.
Theorem

$$
f:=x^{6}-3 x^{5}+5 x^{4}-5 x^{3}+5 x^{2}-3 x+1 \text { is irreducible }
$$

Proof

E sage: f.is_irreducible()
TrueOver $\mathbb{Z} / 3^{e}[x] f$ factors as $g \cdot h$, with $\operatorname{deg} g=\operatorname{deg} h=3$
淂 the putative lifts to $\mathbb{Z}[x]$ do not divide f

© Factorisation over $\mathbb{Z}[x]$ (Best-Carneiro-Costa-Davenport)

Theorem

$f:=x^{6}-3 x^{5}+5 x^{4}-5 x^{3}+5 x^{2}-3 x+1$ is irreducible

Proof

sage: f.is_irreducible()
True
(1) Over $\mathbb{Z} / 3^{e}[x] f$ factors as $g \cdot h$, with $\operatorname{deg} g=\operatorname{deg} h=3$

道 the putative lifts to $\mathbb{Z}[x]$ do not divide f

Our goal is to build a tactic in lean to automatically generate such formal proofs.

© Factorisation over $\mathbb{Z}[x]$ (Best-Carneiro-Costa-Davenport)

Theorem

$f:=x^{6}-3 x^{5}+5 x^{4}-5 x^{3}+5 x^{2}-3 x+1$ is irreducible

Proof

sage: f.is_irreducible()
True
(1) Over $\mathbb{Z} / 3^{e}[x] f$ factors as $g \cdot h$, with $\operatorname{deg} g=\operatorname{deg} h=3$

潾 the putative lifts to $\mathbb{Z}[x]$ do not divide f

Our goal is to build a tactic in lean to automatically generate such formal proofs.
Can we do a similar thing for class group computations? \&

