
Machine learning L-functions

Edgar Costa (MIT)
October 28, 2024, Mathematics and Machine Learning Program

Slides available at edgarcosta.org

Joint work with Joanna Biere, Giorgi Butbaia, Alyson Deines, Kyu-Hwan Lee, David
Lowry-Duda, Tom Oliver, Tamara Veenstra, and Yidi Qi.

edgarcosta.org


Riemann zeta function: the prototypical L-function
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Used by Chebyshev to study the distribution of primes.

The formula above works for x > 1, e.g., ζ(2) =
∑

n≥1
1
n2 = π2/6.

Riemann was the first to consider it as a complex function and showed it has
meromorphic continuation to C.
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Riemann zeta function functional equation

ζ(s = x + iy) =
+∞∑
n=1
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1
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, <(s) > 1

Functional equation relates s↔ 1− s

ζ(s) = Γζ(s)ζ(1− s)

Riemann showed ζ(s) = 0⇔

s = −2n n ∈ N

0 < <(s) < 1

Riemann hypothesis
ζ(s) = 0 and 0 < <(s) < 1 =⇒<(s) = 1/2

One of the Millennium Prize Problems.
The roots ζ(s) describe the distribution of the primes.

0
1

2
1

x

y



Riemann zeta function is an L-function

L-functions have certain properties

• Dirichlet series

L(s) =
∑
n≥1

ann−s where anm = anam if gcd(n,m) = 1

Enough to know apn to deduce the rest, where p is a prime number.

• Functional equation

Λ(s) := Ns/2ΓL(s) · L(s) = εΛ((1+ w)− s),

where:
• ΓL(s) are defined in terms of Γ-function.
• ε ∈ {z ∈ C : |z|= 1} is the root number (for our examples today ε = ±1)
• N is the conductor of L(s),
• w ∈ N is the (motivic) weight of L(s).
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L-functions: What do they know? Do they know things? Let’s find out?

L-functions can arise from many sources, and we have a database about them:
www.lmfdb.org: The L-functions and Modular Forms Database

These can be seen as good hash functions for several number theory objects.

They contain a lot of arithmetic information about their sources.

• Class number formula for a number field K :

lim
s→1

(s− 1)L(K, s) = 2r1 · (2π)r2 · RegK ·hK
wK ·

√
|DK |

• Birch and Swinnerton-Dyer conjecture for an elliptic curve E:

L(E, s) vanishes to order r := rank E and
L(r)(E, 1)

r!
=

#Sha(E) · ΩE · RegE ·
∏
p cp

(#Etor)2

www.lmfdb.org
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L-functions: What do they know? Do they know things? Let’s find out?

Can we harvest this arithmetic information about their sources from an
approximation?

L(s) =
∑
n≥1

ann−s

Question
How many an does one need to extract this information?

It is sufficient an for n ≤ O(
√
N), for a fixed family of L-functions.

Can one do with less?
Several groups have investigated this question with partial success!

In our first experiment, we set out to investigate this question agnostic of the
source, with a focus on the order of vanishing, for rational L-functions, i.e., an ∈ Q.
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We looked at about 250k rational L-functions of small arithmetic complexity



We did some principal component analysis
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Looked at averaged ap



Looked at averaged ap, restricted to primitive L-functions



Looked at averaged ap, excluding the largest source



Looked at averaged ap, excluding the largest source and primitive



Training order of vanishing via ap’s



Training order of vanishing via PCA

Indeed, training just with the first principle component retains much accuracy.



Training order of vanishing via PCA

Indeed, training just with the first principle component retains much accuracy.



Upshot

• Rational L-functions as a dataset seem to be agnostic to their source, when
normalized accordingly.

• Techniques employed for specific classes of L-function should generalize.
• Linear discriminant analysis gives a good predictors for the order of vanishing.
• First principle component strongly contributes to training accuracy.

• The data set is quite skewed, so all this should be taken with a grain of salt.

Can we put this theory to the test?
How do these tools perform for non-rational L-functions?
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L-functions associated to Maass forms

Maass forms are very similar to classical modular forms.

Classical modular form Maass form
Domain {z ∈ C : =(z) > 0}

Symmetry group ⊂ GL2(Z) ⊂ GL2(R)
eigenfunction for ∆ ∆f = λf
Fourier expansion

∑
n≥1 ane2πinz

∑
n≥1 anφn,s,λ(z)

an algebraic transcendental in general
L(f , s)

∑
n≥1 ann−s

Difficulty to compute L

www.lmfdb.org recently added about 35k of these to its database.
Unfortunately, for about half of them, the data is incomplete .

www.lmfdb.org
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Maass forms: the missing data, the Fricke sign

f (z) = wNf (−1/Nz), wN = ±1 =
∏
p|N

wp where wp ∈ {±1}

and N is the Maass form’s level (or conductor).

Furthermore, ap = −wp/
√p, thus if wp is unknown, then ap is also unknown.

Knowing wN and the symmetry type of f (∈ {±1}) determines the root number ε in

Λ(s) := Ns/2ΓL(s) · L(s) = εΛ(1− s).

Theoretically, one could compute enough other an for n ≤ O(
√
N) to deduce wp

from the functional equation.

This is impractical; instead, we would like to guess wN (or wp).

Can we predict it some other way?
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Averaged ap separated by wN = Fricke sign

Linear Discriminant Analysis is a good candidate for a predictor.



Averaged (−1)sap separated by wN = Fricke sign and symmetry type



Averaged −ap for odd forms, separated by (rigorous/LDA predicted) wN



Neural networks approach: Earlier ap and the eigenvalue λ play a bigger role

We also observed that simpler neural networks performed better.


