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Riemann zeta function: the prototypical L-function
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Riemann zeta function: the prototypical L-function
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Used by Chebyshev to study the distribution of primes.
The formula above works for x > 1, e.g, ¢(2) = >, iz = 72 /6.

Riemann was the first to consider it as a complex function and showed it has
meromorphic continuation to C.



Riemann zeta function functional equation
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Functional equation relates s <+ 1—s
¢(s) =Te(s)¢(1—5)

s=-2nneN
0 <R(s) <1

Riemann showed ¢(s) = 0 & {

Riemann hypothesis
¢(s)=0and 0 < R(s) <1=R(s) =1/2

One of the Millennium Prize Problems.
The roots ((s) describe the distribution of the primes.



Riemann zeta function is an L-function

L-functions have certain properties
- Dirichlet series

L(S) = Zannis Where Unm = Andm If ng(n7 m) =1

n>1

Enough to know apn to deduce the rest, where p is a prime number.
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L-functio

ns have certain properties

- Dirichlet series

L(S) = Zannis Where Unm = Andm If ng(n7 m) =1

n>1

Enough to know apn to deduce the rest, where p is a prime number.
- Functional equation

where:

A(s) == NS/2T(s) - L(s) = eN((1 + w) — s),

- T'(s) are defined in terms of I'-function.

- e €{z € C:|z|=1}is the root number (for our examples today e = +1)
- N is the conductor of L(s),

- w € N is the (motivic) weight of L(s).



L-functions: What do they know? Do they know things? Let’s find out?

L-functions can arise from many sources, and we have a database about them:
www.lmfdb.org: The L-functions and Modular Forms Database

These can be seen as good hash functions for several number theory objects.
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L-functions: What do they know? Do they know things? Let’s find out?

L-functions can arise from many sources, and we have a database about them:
www.lmfdb.org: The L-functions and Modular Forms Database

These can be seen as good hash functions for several number theory objects.
They contain a lot of arithmetic information about their sources.

- Class number formula for a number field K:

. r . .
(s — LK, s) = 2" - (27)" - Regy -hy
W - /[Dk]

- Birch and Swinnerton-Dyer conjecture for an elliptic curve E:

[im
s—1

L(E,s) vanishes to order r := rank E and
LO(E, ) B #Sha(E) - Qf - Rege - [, ¢p
r! - (#Etor)z
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L-functions: What do they know? Do they know things? Let’s find out?

Can we harvest this arithmetic information about their sources from an

approximation?
L(s) = _amn

n>1
Question
How many a, does one need to extract this information?
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It is sufficient a, for n < O(v/N), for a fixed family of L-functions.



L-functions: What do they know? Do they know things? Let’s find out?

Can we harvest this arithmetic information about their sources from an

approximation?
L(s) = _amn

n>1
Question
How many a, does one need to extract this information?

It is sufficient a, for n < O(v/N), for a fixed family of L-functions.

Can one do with less?
Several groups have investigated this question with partial success!

In our first experiment, we set out to investigate this question agnostic of the
source, with a focus on the order of vanishing, for rational L-functions, i.e,, a, € Q.



We looked at about 250k rational L-functions of small arithmetic complexity
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We did some principal component analysis

PCA colored by crder_of_vanishing
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We did some principal component analysis

3D PCA colored by order_of_vanishing
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Looked at averaged a,

Primes vs Average Ap values for L-functions type = all

Order of Vanishing
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@ Looked at averaged a,, restricted to primitive L-functions

Primes vs Average Ap values for L-functions type = all, primitive

Order of Vanishing
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@ Looked at averaged a,, excluding the largest source

Primes vs Average Ap values for L-functions type = not ECNF

Order of Vanishing
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© Looked at averaged a,, excluding the largest source and primitive

Primes vs Average Ap values for L-functions type = not ECNF, primitive

Order of Vanishing
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Training order of vanishing via a,’s

Train and Test Accuracy over Epochs Saliency Map for Feature Importance (Ranked)
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@ Training order of vanishing via PCA
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@ Training order of vanishing via PCA

Train and Test Accuracy over Epochs Saliency Map for Feature Importance (Ranked)
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Indeed, training just with the first principle component retains much accuracy.



- Rational L-functions as a dataset seem to be agnostic to their source, when
normalized accordingly.
- Techniques employed for specific classes of L-function should generalize.
- Linear discriminant analysis gives a good predictors for the order of vanishing.
- First principle component strongly contributes to training accuracy.

- The data set is quite skewed, so all this should be taken with a grain of salt.



- Rational L-functions as a dataset seem to be agnostic to their source, when
normalized accordingly.
- Techniques employed for specific classes of L-function should generalize.
- Linear discriminant analysis gives a good predictors for the order of vanishing.
- First principle component strongly contributes to training accuracy.

- The data set is quite skewed, so all this should be taken with a grain of salt.

Can we put this theory to the test?
How do these tools perform for non-rational L-functions?



L-functions associated to Maass forms

Maass forms are very similar to classical modular forms.

Classical modular form Maass form

Domain
Symmetry group
eigenfunction for A
Fourier expansion
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L-functions associated to Maass forms

Maass forms are very similar to classical modular forms.

Classical modular form Maass form
Domain {ze C:3(2) > 0}
Symmetry group C GLy(2Z) C GLy(R)
eigenfunction for A Af =X
Fourier expansion S paq An€2TI? > >t Andnsa(2)
an al_gebraic transcendental in general
L(fvs) Zn21 a”n_s
Difficulty to compute L &) =

www.lmfdb.org recently added about 35k of these to its database.
Unfortunately, for about half of them, the data is incomplete &3.
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Maass forms: the missing data, the Fricke sign

f(z) = waf(=1/Nz), wy = £1= ][ w, where w, € {£1}
pIN
and N is the Maass form'’s level (or conductor).

Furthermore, a, = —w,/+/p, thus if wp is unknown, then a, is also unknown.
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Maass forms: the missing data, the Fricke sign

f(z) = waf(=1/Nz), wy = £1= ][ w, where w, € {£1}
pIN
and N is the Maass form'’s level (or conductor).

Furthermore, a, = —w,/+/p, thus if wp is unknown, then a, is also unknown.
Knowing wy and the symmetry type of f (€ {£1}) determines the root number ¢ in
A(S) := N°/2T(S) - L(s) = eA(1 — ).

Theoretically, one could compute enough other a, for n < O(+v/N) to deduce Wp
from the functional equation.

This is impractical; instead, we would like to guess wy (or vvp).

Can we predict it some other way?



® Averaged a, separated by wy = Fricke sign

p vs Average Ap values for Maass Forms

Fricke Sign
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Linear Discriminant Analysis is a good candidate for a predictor.



@ Averaged (—1)°a, separated by wy = Fricke sign and symmetry type

p vs Average Ap values for Maass Forms type - Symmetry Plots Combined
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& Averaged —a, for odd forms, separated by (rigorous/LDA predicted) wy

p vs Average Ap values for Predicted Maass and Rigorously Calculated Forms type
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Neural networks approach: Earlier a, and the eigenvalue \ play a bigger role
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We also observed that simpler neural networks performed better.



