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Motivation

Motivation: Randomness Principle

Rigidity/Randomness Dichotomy [Sarnak]

Given an arithmetic problem, either
@ rigid structure ~~ rigid solution, or
@ the answer is difficult to determine ~~ random behaviour
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Motivation

Motivation: Randomness Principle

Rigidity/Randomness Dichotomy [Sarnak]

Given an arithmetic problem, either
@ rigid structure ~~ rigid solution, or
@ the answer is difficult to determine ~~ random behaviour

@ Understanding and providing the probability law ~~ deep
understanding of the phenomenon

@ Real world applications
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Motivation

Motivation: Problem

p a prime number
X an "“integral” object, e.g.:

@ a integer
@ a polynomial with integer coefficients

@ a curve or a surface defined by a polynomial equation with integer
coefficients
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p a prime number
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Motivation

Motivation: Problem

p a prime number
X an "“integral” object, e.g.:

@ a integer
@ a polynomial with integer coefficients

@ a curve or a surface defined by a polynomial equation with integer
coefficients

We can consider X modulo p.

Given X mod p

o What can we say about X?
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Motivation

Motivation: Problem

p a prime number
X an "“integral” object, e.g.:

@ a integer
@ a polynomial with integer coefficients

@ a curve or a surface defined by a polynomial equation with integer
coefficients

We can consider X modulo p.

Given X mod p

o What can we say about X?
@ What if we consider infinitely many primes?
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Motivation

Motivation: Problem

p a prime number
X an "“integral” object, e.g.:

@ a integer
@ a polynomial with integer coefficients

@ a curve or a surface defined by a polynomial equation with integer
coefficients

We can consider X modulo p.

Given X mod p

o What can we say about X?
@ What if we consider infinitely many primes?

@ How does it behave as p — co?
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Polynomials in one variable
®000000

Overview

@ Polynomials in one variable

© Elliptic curves

© Quartic surfaces
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Polynomials in one variable
0O@00000

Counting roots of polynomials

f(x) € Z[x] an irreducible polynomial of degree d > 0
p a prime number

Consider:

Ne(p) .= #{x€{0,...,p—1} : f(x) =0 mod p}
=#{xeF, : f(x)=0}

Ne(p) € {0,1,...,d}

How often does each value occur? l
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Polynomials in one variable
[e]e] lele]ele)

Example: quadratic polynomials

f(x) = ax® + bx + ¢, A = b? — 4ac, the discriminant of f.

0 if A is not a square modulo p
Quadratic formula = Nf(p) =<1 A=0modp
2 if A 'is a square modulo p
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Polynomials in one variable
[e]e] lele]ele)

Example: quadratic polynomials

f(x) = ax® + bx + ¢, A = b? — 4ac, the discriminant of f.

0 if A is not a square modulo p
Quadratic formula = Nf(p) =<1 A=0modp
2 if A 'is a square modulo p

Half of the numbers modulo p are squares.
Hence, if A isn't a square, then Prob(A is a square modulo p) =1/2

= Prob(N¢(p) = 0) = Prob(N¢(p) =2) = %
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Polynomials in one variable
[e]e] lele]ele)

Example: quadratic polynomials

f(x) = ax® + bx + ¢, A = b? — 4ac, the discriminant of f.

0 if A is not a square modulo p
Quadratic formula = Nf(p) =<1 A=0modp
2 if A 'is a square modulo p

Half of the numbers modulo p are squares.
Hence, if A isn't a square, then Prob(A is a square modulo p) =1/2

= Prob(N¢(p) = 0) = Prob(N¢(p) =2) = %

0 ifp=2,3mod5
For example, if A =5 and p > 2, then N¢(p) =<1 ifp=5
2 ifp=1,4mod5
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Polynomials in one variable
[e]e]e] le]ele)

Example: cubic polynomials

In general one cannot find explicit formulas for N¢(p), but we can still
determine their average distribution!
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Polynomials in one variable
[e]e]e] le]ele)

Example: cubic polynomials

In general one cannot find explicit formulas for N¢(p), but we can still
determine their average distribution!

F(x) = x3 =2 = (x = V2) (x — V2*™13) (x — ¥/2€*1/3)

1/3 ifx=0
Prob (Ne(p) =x) =< 1/2 ifx=1
1/6 if x =3.

fx)=x3—x2—2x+1=(x—a1)(x —a2) (x — )

2/3 ifx=0
1/3 if x = 3.

Prob (N¢(p) = x) = {
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Polynomials in one variable
[e]e]e]e] lele)

The Chebotarév density theorem

f(x)=(x—a1)...(x —ag), ;€ C
= Aut(Q(a, - .., aq)/Q) = Gal(f/Q)

G C Sy, as it acts on the roots ag, ..., ay by permutations.
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Polynomials in one variable
[e]e]e]e] lele)

The Chebotarév density theorem

f(x)=(x—a1)...(x —ag), ;€ C
= Aut(Q(a, - .., aq)/Q) = Gal(f/Q)

G C Sy, as it acts on the roots ag, ..., ay by permutations.

Theorem (Chebotarév, early 1920s)

Fori=0,...,d, we have

Prob(N¢(p) = i) = Prob(g € G : g fixes i roots),

where

. #{p prime,p < N,N¢(p) =i}
Prob(Ne(p) = i) := Jim #{p prime,p < N} '
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Polynomials in one variable
0000080

Example: Cubic polynomials, again

f(x)=x3—2=(x — V2) (x — v2e™/3) (x — /2&*/3)

1/3 ifx=0
Prob (Ne(p) =x)=¢1/2 ifx=1 and G = Ss.
1/6 ifx=23

id,
53—{ (1+2),(1+3),(2+3), }
(

1-2-3-1),1-3—-2->1)
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Polynomials in one variable
0000080

Example: Cubic polynomials, again

f(x)=x3—2=(x — V2) (x — v2e™/3) (x — /2&*/3)

1/3 ifx=0
Prob (Ne(p) =x)=¢1/2 ifx=1 and G = Ss.
1/6 ifx=23

id,
53—{ (1+2),(1+3),(2+3), }
(

1-2-3-1),1-3—-2->1)

f(x)=x3—x2=2x+1=(x—a1)(x—a)(x —a3)

2/3 ifx=0

d G =17/31.
13 ifx=3 " /

Prob (N¢(p) = x) = {
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Polynomials in one variable

000000

Prime powers

We may also define

Nr (p°) = # {x € Fpe © f(x) =0}

Theorem (Chebotarév continued)

Prob (N,c (p) = c1, Nf (p2) =, )
I

Prob (g € G : g fixes ¢, roots, g> fixes ¢, roots, . . )
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Polynomials in one variable

000000

Prime powers

We may also define

Nr (p°) = # {x € Fpe © f(x) =0}

Theorem (Chebotarév continued)

Prob (N,c (p) = c1, Nf (p2) =, )
I

Prob (g € G : g fixes ¢, roots, g> fixes ¢, roots, . . )

Let f(x) = x> — 2, then G = S3 and:

Prob (Nr (p) = Nr (p?) =0) =1/3
Prob (Nr (p) = Nr (p?) =3) =1/6
Prob (N¢ (p) = 1, Nr (p?) =3) =1/2
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ptic curves
000000000

© Elliptic curves
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Elliptic curves
0@00000000

Elliptic curves

An elliptic curve is a smooth plane algebraic curve defined by
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Elliptic curves
0@00000000

Elliptic curves

An elliptic curve is a smooth plane algebraic curve defined by

y2=x*4ax+b

over the complex numbers C this is a torus:

There is a natural group structure! R
If P, Q, and R are colinear, then
P+Q+R=0 [\
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Elliptic curves
0@00000000

Elliptic curves

An elliptic curve is a smooth plane algebraic curve defined by

y2=x*4ax+b

over the complex numbers C this is a torus:

There is a natural group structure! R
If P, Q, and R are colinear, then
P+Q+R=0 [\

Applications: e cryptography /P</
e integer factorization /\

e pseudorandom numbers, ...

Edgar Costa Equidistributions in arithmetic geometry



Elliptic curves
0080000000

Counting points on elliptic curves

Given an elliptic curve over Q

X:y’=x>4ax+b, abclZ

We can consider its reduction modulo p (ignoring bad primes and p = 2).

Edgar Costa Equidistributions in arithmetic geometry



Elliptic curves
0080000000

Counting points on elliptic curves

Given an elliptic curve over Q
X:y’=x>4ax+b, abclZ

We can consider its reduction modulo p (ignoring bad primes and p = 2).

As before, consider:

Nx (p) := #X(Fp)
= {(va) € (Fp)2 : }/2 = f(X)} +1

One cannot hope to write Nx (p) as an explicit function of p.
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Elliptic curves
0080000000

Counting points on elliptic curves

Given an elliptic curve over Q

X:y’=x>4ax+b, abclZ

We can consider its reduction modulo p (ignoring bad primes and p = 2).

As before, consider:

Nx (p) := #X(Fp)
= {(va) € (Fp)2 : }/2 = f(X)} +1

One cannot hope to write Nx (p) as an explicit function of p.

Instead, we look for statistical properties of Nx (p).
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Elliptic curves
000@000000

Hasse's bound

Theorem (Hasse, 1930s)

lp+1— Nx(p)| <2/p.
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Elliptic curves
000@000000

Hasse's bound

Theorem (Hasse, 1930s)

lp+1— Nx(p)| <2/p.

In other words,

Nx (p) :p+17\/.5>‘p7 )‘P € [7232]

What can we say about the error term, A,, as p — 007
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Elliptic curves
[o]e]e]e] lelelele]e}

Weil's theorem

Theorem (Hasse, 1930s)
Ne(p)=p+1—pPhp, A €[-2,2].
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Elliptic curves
[o]e]e]e] lelelele]e}

Weil's theorem

Theorem (Hasse, 1930s)
Ne(p)=p+1—pPhp, A €[-2,2].

Taking A\, = 2cos 8, with 8, € [0, 7] we can rewrite

Nx(p) = p+1—/plap +ap), ap=e.
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Elliptic curves
[o]e]e]e] lelelele]e}

Weil's theorem

Theorem (Hasse, 1930s)
Nx (p) =P + 1-— \/E>‘p7 AI:) S [7272]

Taking A\, = 2cos 8, with 8, € [0, 7] we can rewrite

Nx(p) = p+1—/plap +ap), ap=e.

Theorem (Weil, 1940s)

Nx (p°) = p° + 1~ Vp® (o) +a,°)
=p®+1—+/p2cos(eb,)

We may thus focus our attention on

pap€S' or pr0,€[0,7] or pr2cosh, € [-2,2]
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Elliptic curves
[o]e]e]e]e] lelelele}

Histograms

If one picks an elliptic curve and computes a histogram for the values

Nx(p) —1—p
NG

over a large range of primes, one always observes convergence to one of
three limiting shapes!

16 /29 Edgar Costa Equidistributions in arithmetic geometry

=2Rea, =2cosb,



http://math.mit.edu/~drew/g1SatoTateDistributions.html

Elliptic curves
[o]e]e]e]e] lelelele}

Histograms

16 /29

If one picks an elliptic curve and computes a histogram for the values

Nx(p) —1—p
NG

over a large range of primes, one always observes convergence to one of
three limiting shapes!

Al

One can confirm the conjectured convergence with high numerical
accuracy:
http://math.mit.edu/~drew/glSatoTateDistributions.html

=2Rea, =2cosb,
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Elliptic curves
0000008000

Classification of Elliptic curves

Elliptic curves can be divided in two classes: special and ordinary
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Elliptic curves
0000008000

Classification of Elliptic curves

Elliptic curves can be divided in two classes: e CM (special)
e non-CM (ordinary)
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Elliptic curves
0000008000

Classification of Elliptic curves

Elliptic curves can be divided in two classes: e CM (special)
e non-CM (ordinary)

Consider the elliptic curve over C

<SSO
AR
o
X/C ~ (mmmess) ~ C/N and A = Zwy Q@ Zw, =

17/29 Edgar Costa Equidistributions in arithmetic geometry



Elliptic curves
0000008000

Classification of Elliptic curves

Elliptic curves can be divided in two classes: e CM (special)
e non-CM (ordinary)

Consider the elliptic curve over C

non-CM the generic case, End(A) =Z

CM A has extra symmetries,
Z C End(A) and wa/wq € Q(v/—d) for some d € N.
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Elliptic curves
0000000800

CM Elliptic curves

Theorem (Deuring 1940s)
If X is a CM elliptic curve then o = e'? are equidistributed with respect
to the uniform measure on the semicircle, i.e.,

{e € C:Im(z) >0} with = 2id9
s

If the extra endomorphism is not defined over the base field one must
take p = %d@ + %%/2

In both cases, the probability density function for 2 cos @ is

{2}
o

Edgar Costa Equidistributions in arithmetic geometry


http://math.mit.edu/~drew/g1SatoTateDistributions.html

Elliptic curves
000000000

non-CM Elliptic curves

Conjecture (Sato—Tate, early 1960s)

If X does not have CM then ), = e'? are equidistributed in the semi
circle with respect to u = 2 sin” 6 do.

The probability density function for 2cosf is

V4 — z2
2
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Elliptic curves
000000000

non-CM Elliptic curves

Conjecture (Sato—Tate, early 1960s)

If X does not have CM then ), = e'? are equidistributed in the semi
circle with respect to u = 2 sin” 6 do.

The probability density function for 2cosf is

V4 — 22
2w

Theorem (Clozel, Harris, Taylor, et al., late 2000s; very hard!)

The Sato—Tate conjecture holds for K = Q (and more generally for K a
totally real number field).
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Elliptic curves
00000000 0e

Group-theoretic interpretation

There is a simple group-theoretic descriptions for these measures!
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Elliptic curves
00000000 0e

Group-theoretic interpretation

There is a simple group-theoretic descriptions for these measures!

There is compact Lie group associated to X called the Sato—Tate group
STx.
It can be interpreted as the “Galois” group of X.
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Elliptic curves
00000000 0e

Group-theoretic interpretation

There is a simple group-theoretic descriptions for these measures!

There is compact Lie group associated to X called the Sato—Tate group
STx.
It can be interpreted as the “Galois” group of X.

The pairs {ap, @y} are distributed like the eigenvalues of a matrix chosen
at random from STx with respect to its Haar measure.

non-CM CI\/I CM (with the 0)
SU(2) Nsu(2)(U(1))

Wl
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Quartic surfaces
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© Quartic surfaces
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Quartic surfaces
[o] lelelele]e]e]e)

K3 surfaces

K3 surfaces are a 2-dimensional analog of elliptic curves.
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Quartic surfaces
[o] lelelele]e]e]e)

K3 surfaces

K3 surfaces are a 2-dimensional analog of elliptic curves.

For simplicity we will focus on smooth quartic surfaces in P3

X:f(x,y,z,w) =0, f€Z[x],degf =4
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Quartic surfaces
[o] lelelele]e]e]e)

K3 surfaces

K3 surfaces are a 2-dimensional analog of elliptic curves.

For simplicity we will focus on smooth quartic surfaces in P3

X:f(x,y,z,w) =0, f€Z[x],degf =4

In this case Nx (p¢) are associated to a 22 x 22 orthogonal matrix!
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Quartic surfaces
[o] lelelele]e]e]e)

K3 surfaces

K3 surfaces are a 2-dimensional analog of elliptic curves.

For simplicity we will focus on smooth quartic surfaces in P3

X:f(x,y,z,w) =0, f€Z[x],degf =4

In this case Nx (p¢) are associated to a 22 x 22 orthogonal matrix!

Instead, we study other geometric invariant.
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Quartic surfaces
[e]e] lelele]ele]e)

Picard lattice

We will be studying a lattice associated to X and X mod p.
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Quartic surfaces
[e]e] lelele]ele]e)

Picard lattice

We will be studying a lattice associated to X and X mod p.

Pic e = Picard lattice of e ~ {curves on e}/ ~
p(e) = rk Pice

p(X) is known as the geometric Picard number

Edgar Costa Equidistributions in arithmetic geometry



Picard lattice

Quartic surfaces
[e]e] lelele]ele]e)

We will be studying a lattice associated to X and X mod p.

Pic e = Picard lattice of e ~ {curves on e}/ ~
p(e) = rkPice

p(X) is known as the geometric Picard number

X— - = PicX - — — > p(X) € [1,...,20]

T

X, := X mod p— — = PicX, - —=p(X,) €[2,4,...22]
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Quartic surfaces
[e]e] lelele]ele]e)

Picard lattice

We will be studying a lattice associated to X and X mod p.

Pic e = Picard lattice of e ~ {curves on e}/ ~
p(e) = rkPice

p(X) is known as the geometric Picard number

X— - = PicX - — — > p(X) € [1,...,20]

T

X, := X mod p— — = PicX, - —=p(X,) €[2,4,...22]

Theorem (Charles 2011)

We have min, p(X4) = p(X},) for infinitely many p.
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Quartic surfaces
000800000

Problem

X—— = = PicX - — - > p(X) €[L,...,20]

B

X, := X mod p— —=PicX, - —>p(X,) €[2,4,...22]

Theorem (Charles 2011)

We have ming p(X4) = p(X,) for infinitely many p.

What can we say about the following:

® Mjump(X) := {p: ming p(Xq) < p(X,)}
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Quartic surfaces
000800000

Problem

X—— = = PicX - — - > p(X) €[L,...,20]

B

X, := X mod p— —=PicX, - —>p(X,) €[2,4,...22]

Theorem (Charles 2011)

We have ming p(X4) = p(X,) for infinitely many p.

What can we say about the following:

o Miump(X) := {p: ming p(Xq) < p(X
#{p < B:p € Mjump(X
#{p < B}

~ T
— —

e y(X,B):=
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Quartic surfaces
0000e0000

Problem

What can we say about the following:

p)
e y(X,B):= #ip = B:p € Mump(X)} as B— oo

#{p < B}

Information about MMjymp(X) ~» Geometric statements

@ How often an elliptic curve has p + 1 points modulo p?

@ How often two elliptic curves have the same number of points
modulo p?

Does X have infinitely many rational curves ?
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Quartic surfaces
00000e000

Numerical experiments for a generic K3, p(X) =1

p(X) is very hard to compute
p(Xp) only now computationally feasible for large p [C.-Harvey]

Edgar Costa Equidistributions in arithmetic geometry



Quartic surfaces
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Numerical experiments for a generic K3, p(X) =1

p(X) is very hard to compute
p(Xp) only now computationally feasible for large p [C.-Harvey]

1.00’\\ 1.00’\\
X, B X, B
050f “A~_ YX.B) 050/ >~ Y(X. B)
S —--2985704%2 S mm-234p70473
0.20f Joo 0.20f S
0.10} N 0.10+ MNay
0.05} Moy 005" N
S S
\\ \\
0.02 N 0.02+ .
L L L L \' ] L L L L ™ ]
10 100 1000 104 10° 10 100 1000 104 105
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Numerical experiments for a generic K3, p(X) =1

p(X) is very hard to compute
p(Xp) only now computationally feasible for large p [C.-Harvey]

1.00’\\ 1.00’\\
X, B X, B
050f “A~_ YX.B) 050/ >~ Y(X. B)
S —--2985704%2 S mm-234p70473
0.20f Joo 0.20f S
0.10} N 0.10+ MNay
0.05} Moy 005" N
S S
\\ \\
0.02 N 0.02+ .
L L L L \' ] L L L L ™ ]
10 100 1000 104 10° 10 100 1000 104 105

Edgar Costa Equidistributions in arithmetic geometry



Quartic surfaces
00000e000

Numerical experiments for a generic K3, p(X) =1

p(X) is very hard to compute

p(Xp) only now computationally feasible for large p [C.-Harvey]

100~ _ 1.00¢
X, B
050f “A~_ B 050/
S —--2985704%2
0.20f Joo 0.20f
0.10+ \\\\ 0.10F
0.05} Moy 005"
S
\\
0.02} N 0.02f
L L L L \' ]
10 100 1000 104 10°
X
V(Xv B) ~ s
VB

RN ¥(X. B)
~
Sa. —m-234p7047
~
\\
\\\
\\
\\
~N
\,
\\
L L L L ™ ]
10 100 1000 104 105
B — >

= Prob(p € Mjump(X)) ~ 1/4/p

Edgar Costa
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Quartic surfaces
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Numerical experiments for a generic K3, p(X) =1

p(X) is very hard to compute
p(Xp) only now computationally feasible for large p [C.-Harvey]

1.00’\\ 1.00’\\
X, B X, B
050f “A~_ B 050/ >~ X B)
S —--2985704%2 S mm-234p70473
0.20f Joo 0.20f S
0.10} N 0.10+ MNay
0.05} Moy 005" N
S S
\\ \\
0.02 N 0.02+ .
L L L L \' ] L L L L ™ ]
10 100 1000 104 10° 10 100 1000 104 105
X
’Y(XaB)Nﬁv B — o

= Prob(p € Mjump(X)) ~ 1/4/p

Similar behaviour observed in other examples with p(X) odd.

In this case, data ~~ equidistribution in O(21)!
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Quartic surfaces
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Numerical experiments for p(X) = 2

0.62 Example 3
0.60

058 Example 4
0.56 —— Example 5

0 10000 20000 30000 40000 50000 60000

No obvious trend ...
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Quartic surfaces
000000800

Numerical experiments for p(X) = 2

0.62 Example 3
0.60

058 Example 4
0.56 —— Example 5

0 10000 20000 30000 40000 50000 60000

No obvious trend ...

Could it be related to some integer being a square modulo p?
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Quartic surfaces
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Numerical experiments for p(X) = 2

0.62 Example 3
0.60

058 Example 4
0.56 —— Example 5

0 10000 20000 30000 40000 50000 60000

No obvious trend ...

Could it be related to some integer being a square modulo p?

Similar behaviour observed in other examples with p(X) even.
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Quartic surfaces
000000800

Numerical experiments for p(X) = 2

0.62 Example 3
0.60

058 Example 4
0.56 —— Example 5

0 10000 20000 30000 40000 50000 60000

No obvious trend . ..

Could it be related to some integer being a square modulo p?
Similar behaviour observed in other examples with p(X) even.
Data ~~ equidistribution in O(20)!

~1 CPU year per example.
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Quartic surfaces
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Numerical experiments ~» Theoretical Results

In most cases we can explain the 1/2!
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Quartic surfaces

000000080

Numerical experiments ~» Theoretical Results

In most cases we can explain the 1/2!

Theorem ([C.] and [C.-Elsenhans-Jahnel])

Assume p(X) is even and p(X) = ming p(X,), there is a dx € Z such
that:

{p > 2: dx is not a square modulo p} C Mjymp(X).

In general, dx is not a square.

Corollary

| \

If dx is not a square:
o liminfg_,0 y(X,B) >1/2
e X has infinitely many rational curves.

N
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Quartic surfaces
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Numerical experiments for p(X) = 2, again

What if we ignore {p : dx is not a square modulo p} C Mjymp(X)?
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Numerical experiments for p(X) = 2, again

What if we ignore {p : dx is not a square modulo p} C Mjymp(X)?

Y(X,B)~c/VB, B—

1 SO 1 N 1 N
~ ¥(X., B) ~ ¥(X, B) o ¥(X, B)
N ~
0.50 \\\\ o 7.15p042 0.50 \\\\ o 126B051 0.50 \‘\\ 105 B0
\\\ \\\ \\\
&3
\S\ \\\\ \\\
N
0.10 . 040 N 040 “\
"~ \\ \\
0.05 e ~, \,
. 0.05 e 0.05 e
100 1000 10° 10° 1000 10° 10° 100 1000 10° 10°
1 if dx is not a square modulo p
Prob(p € Mjump(X)) = 1 .
~ 75 otherwise
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Summary

Computing zeta functions of K3 surfaces via p-adic cohomology~~

o Experimental data for Ij,mp(X)
@ Results regarding MMjymp(X)

@ New class of examples of K3 surfaces with infinitely many rational
curves
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Thank you!
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