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Motivation Polynomials in one variable Elliptic curves Quartic surfaces

Motivation: Randomness Principle

Rigidity/Randomness Dichotomy [Sarnak]
Given an arithmetic problem, either

1 rigid structure  rigid solution, or
2 the answer is difficult to determine  random behaviour

Understanding and providing the probability law  deep
understanding of the phenomenon
Real world applications
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Motivation Polynomials in one variable Elliptic curves Quartic surfaces

Motivation: Problem

p a prime number
X an “integral” object, e.g.:

a integer
a polynomial with integer coefficients
a curve or a surface defined by a polynomial equation with integer
coefficients
. . .

We can consider X modulo p.

Question
Given X mod p

What can we say about X?
What if we consider infinitely many primes?
How does it behave as p →∞?
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Overview

1 Polynomials in one variable

2 Elliptic curves

3 Quartic surfaces
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Motivation Polynomials in one variable Elliptic curves Quartic surfaces

Counting roots of polynomials

f (x) ∈ Z[x ] an irreducible polynomial of degree d > 0

p a prime number

Consider:

Nf (p) := # {x ∈ {0, . . . , p − 1} : f (x) ≡ 0 mod p}
= # {x ∈ Fp : f (x) = 0}

Nf (p) ∈ {0, 1, . . . , d}

Question
How often does each value occur?
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Example: quadratic polynomials

f (x) = ax2 + bx + c, ∆ = b2 − 4ac, the discriminant of f .

Quadratic formula =⇒ Nf (p) =


0 if ∆ is not a square modulo p
1 ∆ ≡ 0 mod p
2 if ∆ is a square modulo p

Half of the numbers modulo p are squares.
Hence, if ∆ isn’t a square, then Prob(∆ is a square modulo p) = 1/2

=⇒ Prob(Nf (p) = 0) = Prob(Nf (p) = 2) = 1
2

For example, if ∆ = 5 and p > 2, then Nf (p) =


0 if p ≡ 2, 3 mod 5
1 if p = 5
2 if p ≡ 1, 4 mod 5
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Example: cubic polynomials

In general one cannot find explicit formulas for Nf (p), but we can still
determine their average distribution!

f (x) = x3 − 2 =
(
x − 3
√

2
) (

x − 3
√

2e2πi/3) (x − 3
√

2e4πi/3)

Prob (Nf (p) = x) =


1/3 if x = 0
1/2 if x = 1
1/6 if x = 3.

f (x) = x3 − x2 − 2x + 1 = (x − α1) (x − α2) (x − α3)

Prob (Nf (p) = x) =
{

2/3 if x = 0
1/3 if x = 3.

7 / 29 Edgar Costa Equidistributions in arithmetic geometry



Motivation Polynomials in one variable Elliptic curves Quartic surfaces

Example: cubic polynomials

In general one cannot find explicit formulas for Nf (p), but we can still
determine their average distribution!

f (x) = x3 − 2 =
(
x − 3
√

2
) (

x − 3
√

2e2πi/3) (x − 3
√

2e4πi/3)

Prob (Nf (p) = x) =


1/3 if x = 0
1/2 if x = 1
1/6 if x = 3.

f (x) = x3 − x2 − 2x + 1 = (x − α1) (x − α2) (x − α3)

Prob (Nf (p) = x) =
{

2/3 if x = 0
1/3 if x = 3.

7 / 29 Edgar Costa Equidistributions in arithmetic geometry



Motivation Polynomials in one variable Elliptic curves Quartic surfaces

The Chebotarëv density theorem

f (x) = (x − α1) . . . (x − αd ), αi ∈ C
G := Aut(Q(α1, . . . , αd )/Q) = Gal(f /Q)
G ⊂ Sd , as it acts on the roots α1, . . . , αd by permutations.

Theorem (Chebotarëv, early 1920s)
For i = 0, . . . , d, we have

Prob(Nf (p) = i) = Prob(g ∈ G : g fixes i roots),

where

Prob(Nf (p) = i) := lim
N→∞

#{p prime, p ≤ N,Nf (p) = i}
#{p prime, p ≤ N} .
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Example: Cubic polynomials, again

f (x) = x3 − 2 =
(
x − 3
√

2
) (

x − 3
√

2e2πi/3) (x − 3
√

2e4πi/3)

Prob (Nf (p) = x) =


1/3 if x = 0
1/2 if x = 1
1/6 if x = 3

and G = S3.

S3 =

 id,
(1↔ 2), (1↔ 3), (2↔ 3),

(1→ 2→ 3→ 1), (1→ 3→ 2→ 1)



f (x) = x3 − x2 − 2x + 1 = (x − α1) (x − α2) (x − α3)

Prob (Nf (p) = x) =
{

2/3 if x = 0
1/3 if x = 3

and G = Z/3Z.
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Prime powers
We may also define

Nf (pe) = # {x ∈ Fpe : f (x) = 0}

Theorem (Chebotarëv continued)

Prob
(
Nf (p) = c1,Nf

(
p2) = c2, · · ·

)
||

Prob
(
g ∈ G : g fixes c1 roots, g2 fixes c2 roots, . . .

)

Let f (x) = x3 − 2, then G = S3 and:

Prob
(
Nf (p) = Nf

(
p2) = 0

)
= 1/3

Prob
(
Nf (p) = Nf

(
p2) = 3

)
= 1/6

Prob
(
Nf (p) = 1,Nf

(
p2) = 3

)
= 1/2
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1 Polynomials in one variable

2 Elliptic curves

3 Quartic surfaces
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Elliptic curves

An elliptic curve is a smooth plane algebraic curve defined by

y2 = x3 + ax + b

over the complex numbers C this is a torus:

There is a natural group structure!
If P, Q, and R are colinear, then

P + Q + R = 0

Applications: • cryptography
• integer factorization
• pseudorandom numbers, . . .
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Counting points on elliptic curves

Given an elliptic curve over Q

X : y2 = x3 + ax + b, a, b ∈ Z

We can consider its reduction modulo p (ignoring bad primes and p = 2).

As before, consider:

NX (p) := #X (Fp)
=
{

(x , y) ∈ (Fp)2 : y2 = f (x)
}

+ 1

One cannot hope to write NX (p) as an explicit function of p.

Instead, we look for statistical properties of NX (p).
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Hasse’s bound

Theorem (Hasse, 1930s)

|p + 1− NX (p)| ≤ 2√p.

In other words,

Nx (p) = p + 1−√pλp, λp ∈ [−2, 2]

What can we say about the error term, λp, as p →∞?
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Weil’s theorem
Theorem (Hasse, 1930s)

Nx (p) = p + 1−√pλp, λp ∈ [−2, 2].

Taking λp = 2 cos θp, with θp ∈ [0, π] we can rewrite

NX (p) = p + 1−√p(αp + αp), αp = e iθp .

Theorem (Weil, 1940s)

NX (pe) = pe + 1−
√

pe
(
αe

p + αp
e)

= pe + 1−
√

pe 2 cos (e θp)

We may thus focus our attention on

p 7→ αp ∈ S1 or p 7→ θp ∈ [0, π] or p 7→ 2 cos θp ∈ [−2, 2]
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Histograms

If one picks an elliptic curve and computes a histogram for the values

NX (p)− 1− p
√p = 2 Reαp = 2 cos θp

over a large range of primes, one always observes convergence to one of
three limiting shapes!

-2 -1 1 2 -2 -1 1 2 -2 -1 0 1 2

One can confirm the conjectured convergence with high numerical
accuracy:
http://math.mit.edu/∼drew/g1SatoTateDistributions.html
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Classification of Elliptic curves

Elliptic curves can be divided in two classes: special and ordinary

Consider the elliptic curve over C

X/C ' ' C/Λ and Λ = Zω1 ⊗Zω2 =

non-CM the generic case, End(Λ) = Z
CM Λ has extra symmetries,

Z ( End(Λ) and ω2/ω1 ∈ Q(
√
−d) for some d ∈ N.
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CM Elliptic curves
Theorem (Deuring 1940s)

If X is a CM elliptic curve then αp = e iθ are equidistributed with respect
to the uniform measure on the semicircle, i.e.,{

e iθ ∈ C : Im(z) ≥ 0
}

with µ = 1
2π dθ

If the extra endomorphism is not defined over the base field one must
take µ = 1

π dθ + 1
2δπ/2

In both cases, the probability density function for 2 cos θ is

{1, 2}
4π
√

4− z2
=

-2 -1 1 2
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non-CM Elliptic curves
Conjecture (Sato–Tate, early 1960s)

If X does not have CM then αp = e iθ are equidistributed in the semi
circle with respect to µ = 2

π sin2 θ dθ.

The probability density function for 2cosθ is

√
4− z2

2π =

-2 -1 1 2

Theorem (Clozel, Harris, Taylor, et al., late 2000s; very hard!)
The Sato–Tate conjecture holds for K = Q (and more generally for K a
totally real number field).

19 / 29 Edgar Costa Equidistributions in arithmetic geometry
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Group-theoretic interpretation

There is a simple group-theoretic descriptions for these measures!

There is compact Lie group associated to X called the Sato–Tate group
STX .
It can be interpreted as the “Galois” group of X .

The pairs {αp, αp} are distributed like the eigenvalues of a matrix chosen
at random from STX with respect to its Haar measure.

non-CM CM CM (with the δ)
SU(2) U(1) NSU(2)(U(1))

-2 -1 1 2 -2 -1 1 2 -2 -1 0 1 2
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1 Polynomials in one variable

2 Elliptic curves

3 Quartic surfaces
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K3 surfaces

K3 surfaces are a 2-dimensional analog of elliptic curves.

For simplicity we will focus on smooth quartic surfaces in P3

X : f (x , y , z ,w) = 0, f ∈ Z[x ], deg f = 4

In this case NX (pe) are associated to a 22× 22 orthogonal matrix!

Instead, we study other geometric invariant.
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Picard lattice

We will be studying a lattice associated to X and X mod p.

Pic • = Picard lattice of • ' {curves on •}/ ∼
ρ(•) = rk Pic •
ρ(X ) is known as the geometric Picard number

X //

��

Pic X� _

��

// ρ(X ) ∈ [1, . . . , 20]

???
��

Xp := X mod p // Pic X p // ρ(X p) ∈ [2, 4, . . . 22]

Theorem (Charles 2011)

We have minq ρ(X q) = ρ(X p) for infinitely many p.
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Problem

X //

��

Pic X� _

��

// ρ(X ) ∈ [1, . . . , 20]

???
��

Xp := X mod p // Pic X p // ρ(X p) ∈ [2, 4, . . . 22]

Theorem (Charles 2011)

We have minq ρ(X q) = ρ(X p) for infinitely many p.

What can we say about the following:

Πjump(X ) :=
{

p : minq ρ(X q) < ρ(X p)
}

γ(X ,B) := # {p ≤ B : p ∈ Πjump(X )}
# {p ≤ B} as B →∞
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Problem

What can we say about the following:

Πjump(X ) :=
{

p : minq ρ(X q) < ρ(X p)
}

γ(X ,B) := # {p ≤ B : p ∈ Πjump(X )}
# {p ≤ B} as B →∞

Information about Πjump(X )  Geometric statements

How often an elliptic curve has p + 1 points modulo p?
How often two elliptic curves have the same number of points
modulo p?
Does X have infinitely many rational curves ?
. . .
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Numerical experiments for a generic K3, ρ(X ) = 1
ρ(X ) is very hard to compute
ρ(X p) only now computationally feasible for large p [C.-Harvey]

γ(X ,B) ∼ cX√
B
, B →∞

=⇒ Prob(p ∈ Πjump(X )) ∼ 1/√p

Similar behaviour observed in other examples with ρ(X ) odd.

In this case, data  equidistribution in O(21)!
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Numerical experiments for ρ(X ) = 2

No obvious trend . . .

Could it be related to some integer being a square modulo p?

Similar behaviour observed in other examples with ρ(X ) even.

Data  equidistribution in O(20)!

∼1 CPU year per example.

27 / 29 Edgar Costa Equidistributions in arithmetic geometry



Motivation Polynomials in one variable Elliptic curves Quartic surfaces

Numerical experiments for ρ(X ) = 2

No obvious trend . . .

Could it be related to some integer being a square modulo p?

Similar behaviour observed in other examples with ρ(X ) even.

Data  equidistribution in O(20)!

∼1 CPU year per example.

27 / 29 Edgar Costa Equidistributions in arithmetic geometry



Motivation Polynomials in one variable Elliptic curves Quartic surfaces

Numerical experiments for ρ(X ) = 2

No obvious trend . . .

Could it be related to some integer being a square modulo p?

Similar behaviour observed in other examples with ρ(X ) even.

Data  equidistribution in O(20)!

∼1 CPU year per example.

27 / 29 Edgar Costa Equidistributions in arithmetic geometry



Motivation Polynomials in one variable Elliptic curves Quartic surfaces

Numerical experiments for ρ(X ) = 2

No obvious trend . . .

Could it be related to some integer being a square modulo p?

Similar behaviour observed in other examples with ρ(X ) even.

Data  equidistribution in O(20)!

∼1 CPU year per example.

27 / 29 Edgar Costa Equidistributions in arithmetic geometry



Motivation Polynomials in one variable Elliptic curves Quartic surfaces

Numerical experiments  Theoretical Results

In most cases we can explain the 1/2!

Theorem ([C.] and [C.-Elsenhans-Jahnel])

Assume ρ(X ) is even and ρ(X ) = minq ρ(X q), there is a dX ∈ Z such
that:

{p > 2 : dX is not a square modulo p} ⊂ Πjump(X ).

In general, dX is not a square.

Corollary
If dX is not a square:

lim infB→∞ γ(X ,B) ≥ 1/2
X has infinitely many rational curves.
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Numerical experiments for ρ(X ) = 2, again

What if we ignore {p : dX is not a square modulo p} ⊂ Πjump(X )?

γ (X ,B) ∼ c/
√

B, B →∞
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Prob(p ∈ Πjump(X )) =
{

1 if dX is not a square modulo p
∼ 1√p otherwise

29 / 29 Edgar Costa Equidistributions in arithmetic geometry



Motivation Polynomials in one variable Elliptic curves Quartic surfaces

Numerical experiments for ρ(X ) = 2, again

What if we ignore {p : dX is not a square modulo p} ⊂ Πjump(X )?

γ (X ,B) ∼ c/
√

B, B →∞

γ(�� �)

���� �-�����

100 1000 104 105

0.05

0.10

0.50

1
γ(�� �)

���� �-�����

1000 104 105

0.05

0.10

0.50

1
γ(�� �)

���� �-�����

100 1000 104 105
0.05

0.10

0.50

1

Prob(p ∈ Πjump(X )) =
{

1 if dX is not a square modulo p
∼ 1√p otherwise

29 / 29 Edgar Costa Equidistributions in arithmetic geometry



Motivation Polynomials in one variable Elliptic curves Quartic surfaces

Summary

Computing zeta functions of K3 surfaces via p-adic cohomology 

Experimental data for Πjump(X )
Results regarding Πjump(X )
New class of examples of K3 surfaces with infinitely many rational
curves
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Thank you!
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