Equidistributions in arithmetic geometry

Edgar Costa

Dartmouth College

14th January 2016 Dartmouth College Motivation

Polynomials in one varial 0000000 Elliptic curves

Quartic surfaces

Motivation: Randomness Principle

Rigidity/Randomness Dichotomy [Sarnak]

Given an arithmetic problem, either

- $\textcircled{\ } \textbf{ igid structure } \rightsquigarrow \textbf{ rigid solution, or }$
- 2 the answer is difficult to determine \rightsquigarrow random behaviour

Elliptic curves

Quartic surfaces

Motivation: Randomness Principle

Rigidity/Randomness Dichotomy [Sarnak]

Given an arithmetic problem, either

- $\textcircled{\ } \textbf{ igid structure } \rightsquigarrow \textbf{ rigid solution, or }$
- 2 the answer is difficult to determine \rightsquigarrow random behaviour
 - Understanding and providing the probability law → deep understanding of the phenomenon
 - Real world applications

Motivatio	

Elliptic curves

Quartic surfaces

Motivation: Problem

p a prime number *X* an "integral" object, e.g.:

- a integer
- a polynomial with integer coefficients
- a curve or a surface defined by a polynomial equation with integer coefficients

• . . .

lotiv	

Elliptic curves

Quartic surfaces

Motivation: Problem

p a prime number *X* an "integral" object, e.g.:

- a integer
- a polynomial with integer coefficients
- a curve or a surface defined by a polynomial equation with integer coefficients

• . . .

We can consider X modulo p.

Motivation: Problem

p a prime number *X* an "integral" object, e.g.:

- a integer
- a polynomial with integer coefficients
- a curve or a surface defined by a polynomial equation with integer coefficients
- . . .

We can consider X modulo p.

Question

Given $X \mod p$

• What can we say about X?

Motivation: Problem

p a prime number *X* an "integral" object, e.g.:

- a integer
- a polynomial with integer coefficients
- a curve or a surface defined by a polynomial equation with integer coefficients
- . . .

We can consider X modulo p.

Question

Given $X \mod p$

- What can we say about X?
- What if we consider infinitely many primes?

Motivation: Problem

p a prime number *X* an "integral" object, e.g.:

- a integer
- a polynomial with integer coefficients
- a curve or a surface defined by a polynomial equation with integer coefficients
- . . .

We can consider X modulo p.

Question

Given $X \mod p$

- What can we say about X?
- What if we consider infinitely many primes?
- How does it behave as $p \to \infty$?

		П	

2 Elliptic curves

Elliptic curves

Quartic surfaces

Counting roots of polynomials

 $f(x) \in \mathbb{Z}[x]$ an irreducible polynomial of degree d > 0

p a prime number

Consider:

$$egin{aligned} &\mathcal{N}_f(p) := \# \left\{ x \in \{0, \dots, p-1\} \ : \ f(x) \equiv 0 egin{aligned} &\mathrm{mod} \ p
ight\} \ &= \# \left\{ x \in \mathbb{F}_p \ : \ f(x) = 0
ight\} \ &\mathcal{N}_f(p) \in \{0, 1, \dots, d\} \end{aligned}$$

Question

How often does each value occur?

Elliptic curves

Quartic surfaces

Example: quadratic polynomials

$$f(x) = ax^2 + bx + c$$
, $\Delta = b^2 - 4ac$, the discriminant of f .

Quadratic formula
$$\implies N_f(p) = \begin{cases} 0 & \text{if } \Delta \text{ is not a square modulo } p \\ 1 & \Delta \equiv 0 \mod p \\ 2 & \text{if } \Delta \text{ is a square modulo } p \end{cases}$$

Elliptic curves

Quartic surfaces

Example: quadratic polynomials

$$f(x) = ax^2 + bx + c$$
, $\Delta = b^2 - 4ac$, the discriminant of f .

Quadratic formula
$$\implies N_f(p) = \begin{cases} 0 & \text{if } \Delta \text{ is not a square modulo } p \\ 1 & \Delta \equiv 0 \mod p \\ 2 & \text{if } \Delta \text{ is a square modulo } p \end{cases}$$

Half of the numbers modulo p are squares. Hence, if Δ isn't a square, then $Prob(\Delta$ is a square modulo p) = 1/2

$$\implies$$
 Prob $(N_f(p) = 0) =$ Prob $(N_f(p) = 2) = \frac{1}{2}$

Elliptic curves

Quartic surfaces

Example: quadratic polynomials

$$f(x) = ax^2 + bx + c$$
, $\Delta = b^2 - 4ac$, the discriminant of f .

Quadratic formula
$$\implies N_f(p) = \begin{cases} 0 & \text{if } \Delta \text{ is not a square modulo } p \\ 1 & \Delta \equiv 0 \mod p \\ 2 & \text{if } \Delta \text{ is a square modulo } p \end{cases}$$

Half of the numbers modulo p are squares. Hence, if Δ isn't a square, then $Prob(\Delta$ is a square modulo p) = 1/2

$$\implies$$
 Prob $(N_f(p) = 0) =$ Prob $(N_f(p) = 2) = \frac{1}{2}$

For example, if $\Delta = 5$ and p > 2, then $N_f(p) = \begin{cases} 0 & \text{if } p \equiv 2,3 \mod 5\\ 1 & \text{if } p = 5\\ 2 & \text{if } p \equiv 1,4 \mod 5 \end{cases}$

Elliptic curves

Quartic surfaces

Example: cubic polynomials

In general one cannot find explicit formulas for $N_f(p)$, but we can still determine their average distribution!

Motivation	Polynomials in one variable	Elliptic curves	
	0000000	000000000	00000000
Example:	cubic polynomials		

In general one cannot find explicit formulas for $N_f(p)$, but we can still determine their average distribution!

$$f(x) = x^3 - 2 = \left(x - \sqrt[3]{2}\right)\left(x - \sqrt[3]{2}e^{2\pi i/3}\right)\left(x - \sqrt[3]{2}e^{4\pi i/3}\right)$$

Prob $\left(N_f(p) = x\right) = \begin{cases} 1/3 & \text{if } x = 0\\ 1/2 & \text{if } x = 1\\ 1/6 & \text{if } x = 3. \end{cases}$

$$f(x) = x^3 - x^2 - 2x + 1 = (x - \alpha_1) (x - \alpha_2) (x - \alpha_3)$$

Prob $(N_f(p) = x) = \begin{cases} 2/3 & \text{if } x = 0\\ 1/3 & \text{if } x = 3. \end{cases}$

Elliptic curves

Quartic surfaces

The Chebotarëv density theorem

$$f(x) = (x - \alpha_1) \dots (x - \alpha_d), \ \alpha_i \in \mathbb{C}$$

 $G := \operatorname{Aut}(\mathbb{Q}(\alpha_1, \dots, \alpha_d)/\mathbb{Q}) = \operatorname{Gal}(f/\mathbb{Q})$
 $G \subset S_d$, as it acts on the roots $\alpha_1, \dots, \alpha_d$ by permutations.

Elliptic curves

Quartic surfaces

The Chebotarëv density theorem

$$\begin{split} f(x) &= (x - \alpha_1) \dots (x - \alpha_d), \ \alpha_i \in \mathbb{C} \\ G &:= \operatorname{Aut}(\mathbb{Q}(\alpha_1, \dots, \alpha_d)/\mathbb{Q}) = \operatorname{Gal}(f/\mathbb{Q}) \\ G &\subset S_d, \ \text{as it acts on the roots } \alpha_1, \dots, \alpha_d \ \text{by permutations.} \end{split}$$

Theorem (Chebotarëv, early 1920s)

For $i = 0, \ldots, d$, we have

$$\operatorname{Prob}(N_f(p) = i) = \operatorname{Prob}(g \in G : g \text{ fixes } i \text{ roots}),$$

where

$$\mathsf{Prob}(N_f(p) = i) := \lim_{N \to \infty} \frac{\#\{p \text{ prime}, p \le N, N_f(p) = i\}}{\#\{p \text{ prime}, p \le N\}}$$

Motivation

Polynomials in one variable

Elliptic curves

Quartic surfaces

Example: Cubic polynomials, again

$$f(x) = x^{3} - 2 = (x - \sqrt[3]{2}) (x - \sqrt[3]{2}e^{2\pi i/3}) (x - \sqrt[3]{2}e^{4\pi i/3})$$

Prob $(N_{f}(p) = x) = \begin{cases} 1/3 & \text{if } x = 0\\ 1/2 & \text{if } x = 1 & \text{and } G = S_{3}.\\ 1/6 & \text{if } x = 3 \end{cases}$

$$S_{3} = \left\{ \begin{array}{c} \mathsf{id}, \\ (1 \leftrightarrow 2), (1 \leftrightarrow 3), (2 \leftrightarrow 3), \\ (1 \rightarrow 2 \rightarrow 3 \rightarrow 1), (1 \rightarrow 3 \rightarrow 2 \rightarrow 1) \end{array} \right\}$$

Motivation

Polynomials in one variable

Elliptic curves

Quartic surfaces

Example: Cubic polynomials, again

$$f(x) = x^3 - 2 = (x - \sqrt[3]{2}) (x - \sqrt[3]{2}e^{2\pi i/3}) (x - \sqrt[3]{2}e^{4\pi i/3})$$

Prob $(N_f(p) = x) = \begin{cases} 1/3 & \text{if } x = 0\\ 1/2 & \text{if } x = 1 \\ 1/6 & \text{if } x = 3 \end{cases}$ and $G = S_3$.

$$S_3 = \left\{ \begin{array}{c} \mathsf{id}, \\ (1 \leftrightarrow 2), (1 \leftrightarrow 3), (2 \leftrightarrow 3), \\ (1 \rightarrow 2 \rightarrow 3 \rightarrow 1), (1 \rightarrow 3 \rightarrow 2 \rightarrow 1) \end{array} \right\}$$

$$f(x) = x^3 - x^2 - 2x + 1 = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$$

Prob $(N_f(p) = x) = \begin{cases} 2/3 & \text{if } x = 0\\ 1/3 & \text{if } x = 3 \end{cases}$ and $G = \mathbb{Z}/3\mathbb{Z}$.

Motivation	Polynomials in one variable	Elliptic curves	Quartic surfaces
	000000	000000000	00000000
Prime powers	5		

We may also define

$$N_f(p^e) = \# \{ x \in \mathbb{F}_{p^e} : f(x) = 0 \}$$

Theorem (Chebotarëv continued)

$$\begin{array}{l} \mathsf{Prob}\left(\mathsf{N}_{\mathsf{f}}\left(\mathsf{p}\right)=c_{1},\mathsf{N}_{\mathsf{f}}\left(\mathsf{p}^{2}\right)=c_{2},\cdots\right)\\ ||\\ \mathsf{Prob}\left(g\in\mathsf{G}:g \ \textit{fixes}\ c_{1} \ \textit{roots},\ g^{2} \ \textit{fixes}\ c_{2} \ \textit{roots},\ldots\right)\end{array}$$

Motivation	Polynomials in one variable	Elliptic curves	Quartic surfaces
	000000		
Prime powers			

We may also define

$$N_f(p^e) = \# \{ x \in \mathbb{F}_{p^e} : f(x) = 0 \}$$

Theorem (Chebotarëv continued)

$$\begin{array}{l} \mathsf{Prob}\left(\mathsf{N}_{f}\left(p\right)=c_{1},\mathsf{N}_{f}\left(p^{2}\right)=c_{2},\cdots\right) \\ || \\ \mathsf{Prob}\left(g\in G:g \ \textit{fixes}\ c_{1} \ \textit{roots},\ g^{2} \ \textit{fixes}\ c_{2} \ \textit{roots},\ldots\right) \end{array}$$

Let $f(x) = x^3 - 2$, then $G = S_3$ and:

$$\begin{aligned} & \mathsf{Prob}\left(N_{f}\left(p\right) = N_{f}\left(p^{2}\right) = 0\right) = 1/3\\ & \mathsf{Prob}\left(N_{f}\left(p\right) = N_{f}\left(p^{2}\right) = 3\right) = 1/6\\ & \mathsf{Prob}\left(N_{f}\left(p\right) = 1, N_{f}\left(p^{2}\right) = 3\right) = 1/2\end{aligned}$$

3 Quartic surfaces

Motivation	Polynomials in one variable	Elliptic curves	
	0000000	000000000	00000000
Elliptic c	urves		

An elliptic curve is a smooth plane algebraic curve defined by

$$y^2 = x^3 + ax + b$$

over the complex numbers $\ensuremath{\mathbb{C}}$ this is a torus:

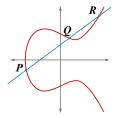
Motivation	Polynomials in one variable	Elliptic curves	
	0000000	000000000	00000000
Elliptic cur	ves		

An elliptic curve is a smooth plane algebraic curve defined by

$$y^2 = x^3 + ax + b$$

over the complex numbers $\ensuremath{\mathbb{C}}$ this is a torus:

There is a natural group structure! If P, Q, and R are colinear, then P + Q + R = 0



Motivation	
	000

Elliptic curves

Quartic surfaces

Elliptic curves

An elliptic curve is a smooth plane algebraic curve defined by

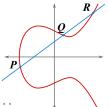
$$y^2 = x^3 + ax + b$$

over the complex numbers $\ensuremath{\mathbb{C}}$ this is a torus:

There is a natural group structure! If P, Q, and R are colinear, then P + Q + R = 0

Applications: • cryptography

- integer factorization
- pseudorandom numbers, ...



Elliptic curves

Quartic surfaces

Counting points on elliptic curves

Given an elliptic curve over $\ensuremath{\mathbb{Q}}$

$$X: y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Z}$$

We can consider its reduction modulo p (ignoring bad primes and p = 2).

Counting points on elliptic curves

Given an elliptic curve over $\ensuremath{\mathbb{Q}}$

$$X: y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Z}$$

We can consider its reduction modulo p (ignoring bad primes and p = 2). As before, consider:

$$egin{aligned} &\mathcal{N}_X\left(p
ight) &:= \#X(\mathbb{F}_p) \ &= \left\{(x,y) \in (\mathbb{F}_p)^2 : y^2 = f(x)
ight\} + 1 \end{aligned}$$

One cannot hope to write $N_X(p)$ as an explicit function of p.

Counting points on elliptic curves

Given an elliptic curve over $\ensuremath{\mathbb{Q}}$

$$X: y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Z}$$

We can consider its reduction modulo p (ignoring bad primes and p = 2). As before, consider:

$$egin{aligned} &\mathcal{N}_X\left(p
ight) &:= \# X(\mathbb{F}_p) \ &= ig\{(x,y) \in (\mathbb{F}_p)^2 : y^2 = f(x)ig\} + 1 \end{aligned}$$

One cannot hope to write $N_X(p)$ as an explicit function of p. Instead, we look for **statistical** properties of $N_X(p)$.

Elliptic curves

Hasse's bound

Theorem (Hasse, 1930s)

$|p+1-N_X(p)|\leq 2\sqrt{p}.$

Hasse's bound

Theorem (Hasse, 1930s)

$$\left|p+1-N_{X}\left(p
ight)\right|\leq2\sqrt{p}.$$

In other words,

$$N_{x}(p) = p + 1 - \sqrt{p}\lambda_{p}, \quad \lambda_{p} \in [-2, 2]$$

What can we say about the error term, λ_p , as $p \to \infty$?

Motivation	Polynomials in one variable	Elliptic curves	Quartic surfaces
Weil's the	orem		
Theorem	(Hasse, 1930s)		
	$N_{x}\left(p ight) =p+1-\sqrt{p}$	$\bar{p}\lambda_p, \lambda_p \in [-2,2].$	

0000000	000000000	00000000
Weil's theorem		
Theorem (Hasse, 1930s)		
$N_{x}\left(p ight) =p$	$+1-\sqrt{p}\lambda_{p}, \lambda_{p}\in [-2,2].$	

Elliptic curves

Taking $\lambda_{\rho} = 2\cos\theta_{\rho}$, with $\theta_{\rho} \in [0, \pi]$ we can rewrite

$$N_X(p) = p + 1 - \sqrt{p}(\alpha_p + \overline{\alpha_p}), \quad \alpha_p = e^{i\theta_p}.$$

0000000	000000000	00000000
Weil's theorem		
Theorem (Hasse, 1930s)		
$N_{x}\left(p ight) =p+$	$-1 - \sqrt{p}\lambda_p, \lambda_p \in [-2, 2].$	
Taking $) = 2 \cos \theta$ with θ		

Elliptic curves

Taking $\lambda_{p} = 2\cos\theta_{p}$, with $\theta_{p} \in [0,\pi]$ we can rewrite

$$N_X(p) = p + 1 - \sqrt{p}(\alpha_p + \overline{\alpha_p}), \quad \alpha_p = e^{i\theta_p}.$$

Theorem (Weil, 1940s)

$$N_X(p^e) = p^e + 1 - \sqrt{p^e} \left(\alpha_p^e + \overline{\alpha_p}^e \right)$$
$$= p^e + 1 - \sqrt{p^e} 2 \cos\left(e \,\theta_p\right)$$

We may thus focus our attention on

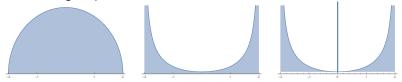
$$p \mapsto \alpha_p \in S^1$$
 or $p \mapsto \theta_p \in [0, \pi]$ or $p \mapsto 2\cos\theta_p \in [-2, 2]$

Motivation	Polynomials in one variable	Elliptic curves	
	0000000	0000000000	00000000
Histograms			

If one picks an elliptic curve and computes a histogram for the values

$$\frac{N_X(p) - 1 - p}{\sqrt{p}} = 2 \operatorname{Re} \alpha_p = 2 \cos \theta_p$$

over a large range of primes, one always observes convergence to one of three limiting shapes!

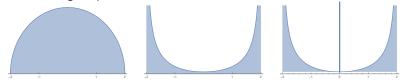


Motivation	Polynomials in one variable	Elliptic curves	
	000000	000000000	00000000
Histograms			

If one picks an elliptic curve and computes a histogram for the values

$$\frac{N_X(p) - 1 - p}{\sqrt{p}} = 2 \operatorname{Re} \alpha_p = 2 \cos \theta_p$$

over a large range of primes, one always observes convergence to one of three limiting shapes!



One can confirm the conjectured convergence with high numerical accuracy:

http://math.mit.edu/~drew/g1SatoTateDistributions.html

 \mathbf{o}

M				

Elliptic curves

Quartic surfaces

Classification of Elliptic curves

Elliptic curves can be divided in two classes: special and ordinary

M				

Elliptic curves 00000000000

Classification of Elliptic curves

Elliptic curves can be divided in two classes: • CM (special)

- non-CM (ordinary)

	tı		t١	

Polynomials in one varial

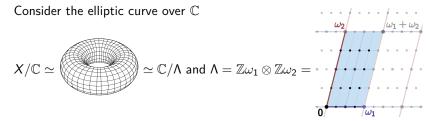
Elliptic curves

Quartic surfaces

Classification of Elliptic curves

Elliptic curves can be divided in two classes:

- CM (special)
- non-CM (ordinary)



			tι	
	τı			

Polynomials in one variab

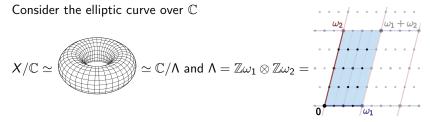
Elliptic curves

Quartic surfaces

Classification of Elliptic curves

Elliptic curves can be divided in two classes:

- CM (special)
- non-CM (ordinary)



non-CM the generic case, $End(\Lambda) = \mathbb{Z}$

CM Λ has extra symmetries, $\mathbb{Z} \subsetneq \operatorname{End}(\Lambda)$ and $\omega_2/\omega_1 \in \mathbb{Q}(\sqrt{-d})$ for some $d \in \mathbb{N}$.

Polynomials in one variable

Elliptic curves

Quartic surfaces

CM Elliptic curves

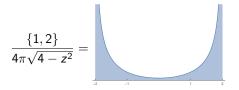
Theorem (Deuring 1940s)

If X is a CM elliptic curve then $\alpha_p = e^{i\theta}$ are equidistributed with respect to the uniform measure on the semicircle, i.e.,

$$ig\{ e^{i heta} \in \mathbb{C} : \mathsf{Im}(z) \geq 0 ig\}$$
 with $\mu = rac{1}{2\pi} \, \mathrm{d} heta$

If the extra endomorphism is not defined over the base field one must take $\mu=\frac{1}{\pi}\,d\theta+\frac{1}{2}\delta_{\pi/2}$

In both cases, the probability density function for $2\cos\theta$ is



Polynomials in one vari

Elliptic curves

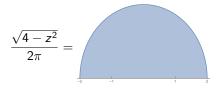
Quartic surfaces

non-CM Elliptic curves

Conjecture (Sato-Tate, early 1960s)

If X does not have CM then $\alpha_p = e^{i\theta}$ are equidistributed in the semi circle with respect to $\mu = \frac{2}{\pi} \sin^2 \theta \, d\theta$.

The probability density function for $2\cos\theta$ is



Polynomials in one varia

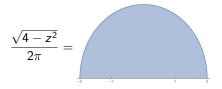
Elliptic curves 00000000000 Quartic surfaces

non-CM Elliptic curves

Conjecture (Sato-Tate, early 1960s)

If X does not have CM then $\alpha_p = e^{i\theta}$ are equidistributed in the semi circle with respect to $\mu = \frac{2}{\pi} \sin^2 \theta \, d\theta$.

The probability density function for $2\cos\theta$ is



Theorem (Clozel, Harris, Taylor, et al., late 2000s; very hard!)

The Sato–Tate conjecture holds for $K = \mathbb{Q}$ (and more generally for K a totally real number field).

М				

Polynomials in one variab

Elliptic curves

Quartic surfaces

Group-theoretic interpretation

There is a simple group-theoretic descriptions for these measures!

Polynomials in one variabl

Elliptic curves

Quartic surfaces

Group-theoretic interpretation

There is a simple group-theoretic descriptions for these measures!

There is compact Lie **group** associated to *X* called the *Sato–Tate* group ST_X .

It can be interpreted as the "Galois" group of X.

Motivatio	

Polynomials in one variabl

Elliptic curves

Quartic surfaces

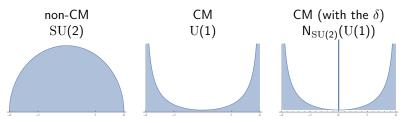
Group-theoretic interpretation

There is a simple group-theoretic descriptions for these measures!

There is compact Lie **group** associated to *X* called the *Sato–Tate* group ST_X .

It can be interpreted as the "Galois" group of X.

The pairs $\{\alpha_p, \overline{\alpha_p}\}\$ are distributed like the eigenvalues of a matrix chosen at random from ST_X with respect to its Haar measure.



Polynomials in one variable

2 Elliptic curves

3 Quartic surfaces

Motivation

K3 surfaces are a 2-dimensional analog of elliptic curves.

K3 surfaces

K3 surfaces are a 2-dimensional analog of elliptic curves.

For simplicity we will focus on $\textbf{smooth}\ \textbf{quartic}\ \textbf{surfaces}\ in\ \mathbb{P}^3$

$$X: f(x, y, z, w) = 0, \quad f \in \mathbb{Z}[x], \deg f = 4$$

K3 surfaces

K3 surfaces are a 2-dimensional analog of elliptic curves.

For simplicity we will focus on $\textbf{smooth}\ \textbf{quartic}\ \textbf{surfaces}\ in\ \mathbb{P}^3$

$$X: f(x, y, z, w) = 0, \quad f \in \mathbb{Z}[x], \ \deg f = 4$$

In this case $N_X(p^e)$ are associated to a 22 \times 22 orthogonal matrix!

K3 surfaces

K3 surfaces are a 2-dimensional analog of elliptic curves.

For simplicity we will focus on smooth quartic surfaces in \mathbb{P}^3

$$X: f(x, y, z, w) = 0, \quad f \in \mathbb{Z}[x], \deg f = 4$$

In this case $N_X(p^e)$ are associated to a 22 × 22 orthogonal matrix! Instead, we study other geometric invariant.

otiv	zati	

Picard lattice

We will be studying a lattice associated to X and $X \mod p$.

		П	

Motivation	Polynomials in one variable	Elliptic curves	Quartic surfaces
	000000	000000000	00000000
Picard latti	се		

We will be studying a lattice associated to X and $X \mod p$.

$$\begin{split} &\mathsf{Pic} \bullet = \mathsf{Picard} \; \mathsf{lattice} \; \mathsf{of} \; \bullet \simeq \{\mathsf{curves} \; \mathsf{on} \; \bullet\} / \sim \\ &\rho(\bullet) = \mathsf{rk} \; \mathsf{Pic} \; \bullet \\ &\rho(\overline{X}) \; \mathsf{is} \; \mathsf{known} \; \mathsf{as} \; \mathsf{the} \; \mathsf{geometric} \; \mathsf{Picard} \; \mathsf{number} \end{split}$$

P

	Polynomials in one variable	Elliptic curves	Quartic surfaces
	0000000	000000000	00000000
Picard lattic	A		

We will be studying a lattice associated to X and $X \mod p$.

Pic • = Picard lattice of •
$$\simeq$$
 {curves on •}/ ~
 $\rho(\bullet) = \operatorname{rk}\operatorname{Pic}\bullet$
 $\rho(\overline{X})$ is known as the geometric Picard number

Motivation	Polynomials in one variable	Elliptic curves 000000000
Picard lattice		

We will be studying a lattice associated to X and $X \mod p$.

Pic • = Picard lattice of •
$$\simeq$$
 {curves on •}/ ~
 $\rho(\bullet) = \operatorname{rk}\operatorname{Pic} \bullet$
 $\rho(\overline{X})$ is known as the geometric Picard number

Theorem (Charles 2011)

We have $\min_{q} \rho(\overline{X}_{q}) = \rho(\overline{X}_{p})$ for infinitely many p.

Quartic surfaces

Motivation			Quartic surfaces
	0000000	000000000	00000000
Droblom			
Problem			

Theorem (Charles 2011)

We have $\min_{q} \rho(\overline{X}_{q}) = \rho(\overline{X}_{p})$ for infinitely many p.

What can we say about the following:

•
$$\Pi_{\text{jump}}(X) := \left\{ p : \min_q \rho(\overline{X}_q) < \rho(\overline{X}_p) \right\}$$

Motivation			Quartic surfaces
	0000000	000000000	00000000
Droblom			
Problem			

Theorem (Charles 2011)

We have $\min_{q} \rho(\overline{X}_{q}) = \rho(\overline{X}_{p})$ for infinitely many p.

What can we say about the following:

•
$$\Pi_{\text{jump}}(X) := \{ p : \min_q \rho(\overline{X}_q) < \rho(\overline{X}_p) \}$$

• $\gamma(X, B) := \frac{\# \{ p \le B : p \in \Pi_{\text{jump}}(X) \}}{\# \{ p \le B \}}$ as $B \to \infty$

Motivation	Polynomials in one variable	Elliptic curves	Quartic surfaces
	000000	000000000	00000000
Problem			

What can we say about the following:

•
$$\Pi_{\text{jump}}(X) := \left\{ p : \min_q \rho(\overline{X}_q) < \rho(\overline{X}_p) \right\}$$

• $\gamma(X, B) := \frac{\# \left\{ p \le B : p \in \Pi_{\text{jump}}(X) \right\}}{\# \left\{ p \le B \right\}}$ as $B \to \infty$

Information about $\Pi_{jump}(X) \rightsquigarrow$ Geometric statements

- How often an elliptic curve has p + 1 points modulo p?
- How often two elliptic curves have the same number of points modulo *p*?
- Does \overline{X} have infinitely many rational curves ?

• . . .

Polynomials in one variab

Elliptic curves

Quartic surfaces

Numerical experiments for a generic K3, $\rho(X) = 1$

 $\rho(\overline{X})$ is very hard to compute

 $\rho(\overline{X}_p)$ only now computationally feasible for large p [C.-Harvey]

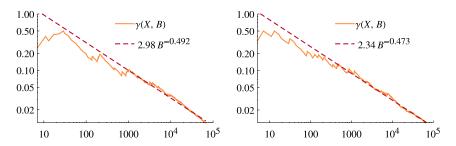
Polynomials in one variat

Elliptic curves

Quartic surfaces

Numerical experiments for a generic K3, $\rho(X) = 1$

 $\rho(\overline{X})$ is very hard to compute $\rho(\overline{X}_p)$ only now computationally feasible for large p [C.-Harvey]



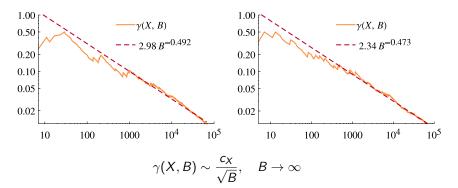
Polynomials in one variab

Elliptic curves

Quartic surfaces

Numerical experiments for a generic K3, $\rho(X) = 1$

 $\rho(\overline{X})$ is very hard to compute $\rho(\overline{X}_p)$ only now computationally feasible for large p [C.-Harvey]



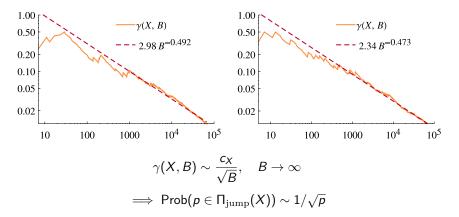
Polynomials in one variab

Elliptic curves

Quartic surfaces

Numerical experiments for a generic K3, $\rho(X) = 1$

 $\rho(\overline{X})$ is very hard to compute $\rho(\overline{X}_p)$ only now computationally feasible for large p [C.-Harvey]



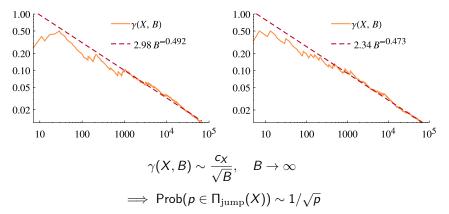
Polynomials in one variab

Elliptic curves

Quartic surfaces

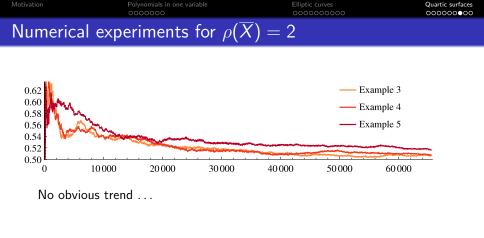
Numerical experiments for a generic K3, $\rho(X) = 1$

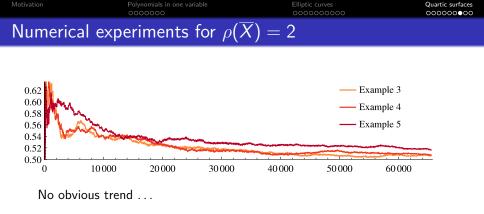
 $\rho(\overline{X})$ is very hard to compute $\rho(\overline{X}_p)$ only now computationally feasible for large p [C.-Harvey]



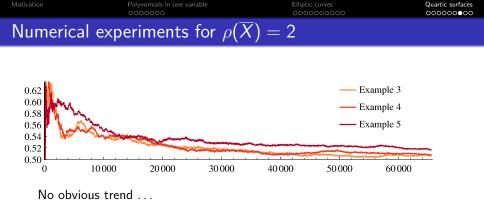
Similar behaviour observed in other examples with $\rho(\overline{X})$ odd.

In this case, data \rightsquigarrow equidistribution in $\mathrm{O}(21)!$

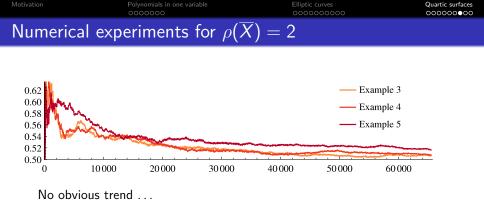




Could it be related to some integer being a square modulo p?



Could it be related to some integer being a square modulo p? Similar behaviour observed in other examples with $\rho(\overline{X})$ even.



Could it be related to some integer being a square modulo p? Similar behaviour observed in other examples with $\rho(\overline{X})$ even. Data \rightsquigarrow equidistribution in O(20)!

 ${\sim}1$ CPU year per example.

Polynomials in one variabl 0000000 Elliptic curves

Quartic surfaces

Numerical experiments ~> Theoretical Results

In most cases we can explain the 1/2!

Polynomials in one varial

Elliptic curves 00000000000 Quartic surfaces

Numerical experiments ~> Theoretical Results

In most cases we can explain the 1/2!

Theorem ([C.] and [C.-Elsenhans-Jahnel])

Assume $\rho(\overline{X})$ is even and $\rho(\overline{X}) = \min_q \rho(\overline{X}_q)$, there is a $d_X \in \mathbb{Z}$ such that:

 $\{p > 2 : d_X \text{ is not a square modulo } p\} \subset \prod_{jump}(X).$

In general, d_X is not a square.

Corollary

If d_X is not a square:

- $\liminf_{B\to\infty}\gamma(X,B)\geq 1/2$
- \overline{X} has infinitely many rational curves.

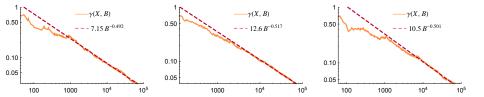
Numerical experiments for $\rho(\overline{X}) = 2$, again

What if we ignore $\{p : d_X \text{ is not a square modulo } p\} \subset \prod_{jump}(X)$?

Motivation	Polynomials in one variable	Elliptic curves 0000000000	Quartic surfaces
Numerical exp	periments for $ ho(\overline{X})$	= 2, again	

What if we ignore $\{p : d_X \text{ is not a square modulo } p\} \subset \prod_{jump}(X)$?

 $\gamma(X,B) \sim c/\sqrt{B}, \quad B \to \infty$



 $\operatorname{Prob}(p \in \Pi_{\operatorname{jump}}(X)) = egin{cases} 1 & ext{if } d_X ext{ is not a square modulo } p \ \sim rac{1}{\sqrt{p}} & ext{otherwise} \end{cases}$

Computing zeta functions of K3 surfaces via p-adic cohomology \rightsquigarrow

- Experimental data for $\Pi_{jump}(X)$
- Results regarding $\Pi_{jump}(X)$
- New class of examples of K3 surfaces with infinitely many rational curves

Quartic surfaces

Thank you!