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Elliptic curves

E:y’=x*4+ax+b, abeZ
Write E, := E mod p, for p a prime of good reduction

- What can we say about #E, for an arbitrary p?
- Given #E, for many p, what can we say about £?

~ studying the statistical properties of #E, or ap := tr Frobp,.

Theorem (Hasse)

Question
What can we say about the error term ap//p as p — 00?



Two types of elliptic curves

There are two limiting distributions for ap/\/p

non-CM CM
Endg 2 = Q Endg F2' = Q(v/—d)

I
-2 =1 1 2 -2 -1 0 1 2

Checkout the gifs: rank 28 and generic


https://math.mit.edu/~drew/g1_r28_a1f.gif
https://math.mit.edu/~drew/g1_r28_a1f.gif
https://math.mit.edu/~drew/g1SatoTateDistributions.html
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There are two limiting distributions for ap/\/p

non-CM CM
Endg 2 = Q Endg F2' = Q(v/—d)

I
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ap = 0 <= Q(Froby) := Q(y/a3 — 4p) € Endg E3


https://math.mit.edu/~drew/g1_r28_a1f.gif

Two types of elliptic curves

ap = p +1— #Ep = trFrobp € [~2/P,2V/P]

non-CM M
Endg £2' = Q Endg £2' = Q(v—d)

I I I I
-2 -1 1 2 -2 -1 0 1 2
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Two types of elliptic curves

ap = p +1— #Ep = trFrobp € [~2/P,2V/P]

non-CM M
Endg £2! = Endg E' = Q(v/—d)

ap = 0 <= Q(Froby) := Q( 02 — 4p) C Endg £3

<= dimEndg Egl >2 = mqln dim Endg ES'


https://math.mit.edu/~drew/g1_r28_a1f.gif

How to distinguish between the two types?

non-CM M
Endg F2' = Q Endg F?' = Q(v/—d)

-2 -1 1 2 -2 -1 0

* Endg E*' — Endg E3' <= Q(Frobp)
* ap # 0 <= Endg E3' is a quadratic field
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How to distinguish between the two types?

non-CM CM
Endg Fal = Endg Fl = Q(v—d)

Al

* Endg E*' — Endg E3' <= Q(Frobp)
* ap # 0 < Endg Ea' Is a quadratic field
- If E has CM by @(F) then
ap = 0 mod p & p inert or ramified in Q(v/—d) & Endg E*' % Endg E2
+ If Eis non-CM, then Endg E3' N Endg E2' ~ Q with prob. 1;
and we expect Prob(a, = 0 mod p) ~ 1/,/p




E:y?+y=x>—x>—10x — 20 (LMFDB label: 11.a2)
* Endg £5' ~ Q(v-1)
* Endg B3' ~ Q(v/—11)
- = Endg ' =Q


http://www.lmfdb.org/EllipticCurve/Q/11/a/2
http://www.lmfdb.org/EllipticCurve/Q/27/a/2

E:y?+y=x>—x>—10x — 20 (LMFDB label: 11.a2)
* Endg £5' ~ Q(v-1)
* Endg B3' ~ Q(v/—11)
- = Endg ' =Q

E:y>+y=x>—7(LMFDB label: 27.a2)
 p=2mod3 = a,=0= EndgEj is a Quaternion algebra

* p=1mod 3 = Endg E3' ~ Q(v/-3)
« ~ Endg F*' = Q(v-3)


http://www.lmfdb.org/EllipticCurve/Q/11/a/2
http://www.lmfdb.org/EllipticCurve/Q/27/a/2
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Genus 2 curve arithmetic, an example C: y? = x> — 5% + 4x + 1

32 ) 2048 ) 2048

Dy = (— 20923 —115209—1333) 4 (209—23 115209—1333)
— 32 8



Genus 2 curve arithmetic, an example C: y? = x> — 5% + 4x + 1

_10;




Genus 2 curves/Abelian surfaces

A::Jac(C:yZ:a6x6+---+ag)

There are 6 possibilities for the real endomorphism algebra:

Abelian surface ‘ Endg A2
square of CM elliptic curve M;,(C)
- QM abelian surface M;(R)
- square of non-CM elliptic curve

- CM abelian surface CxC

- product of CM elliptic curves
product of CM and non-CM elliptic curves | C xR
- RM abelian surface R xR
- product of non-CM elliptic curves
generic abelian surface R




Genus 2 curves/Abelian surfaces

A:=Jac(C:y?* = agx’ + - -- + ay)

There are 6 possibilities for the real endomorphism algebra:

Abelian surface ‘ Endg A2
square of CM elliptic curve M;,(C)
- QM abelian surface M;(R)
- square of non-CM elliptic curve

- CM abelian surface CxC

- product of CM elliptic curves
product of CM and non-CM elliptic curves | C xR

- RM abelian surface R xR
- product of non-CM elliptic curves
generic abelian surface R

Can we distinguish between these by looking at A mod p?



Zeta functions and Frobenius polynomials

- C/Q a nice curve of genus g
- A= Jac(C)
- p a prime of good reduction

Z5(C,T) := exp (Z #C(Fpr)ﬂ/r) e Q(t)

r=1
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Zeta functions and Frobenius polynomials

- C/Q a nice curve of genus g
- A= Jac(C)
- p a prime of good reduction

B %0 2\ Lp(T)
Zp(C,T) :=exp (; #C(Fpr)T /f> = (T_TS)(W

where deg L,(T) = 2g and
Lp(T) = det(1— T Frob, |H'(C)) = det(1 — T Froby |H'(4)) € 1+ TZT]

. QZ1WLD(T):1_QDT+DT2
© =2~ Lp(T) =1=ar1pT + Gz — a1ppT° + p*T*

Lp(T) gives us a lot of information about A, := A mod p



Endomorphism algebras over finite fields

Let A be an abelian variety over F,.

Theorem
Given Lp(T) := det(1 — t Frob|H'(A)), we may compute:

1. (Tate) rk End(Ar,,) forall r > 1;
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Endomorphism algebras over finite fields

Let A be an abelian variety over F,.
Theorem
Given Lp(T) := det(1 — t Frob|H'(A)), we may compute:
1. (Tate) rk End(Ar,,) forall r > 1;
2. (Honda-Tate) the isomorphism class of EndQ(Aqu) forallr>1.

Example
If Ls(T) = 1 — 2T + 25T%, then:
- all endomorphisms are defined over Fys, and
- Ar,; IS isogenous to a square of an elliptic curve

- Endg A% ~ My(Q(v/=6))



Example continued

A=Jac(y? = x> —x* +4x> —8x% +5x — 1) (262144.d.5242881)
For p =5, Ls(T) = 1—2T? + 25T% and:
- all endomorphisms of As are defined over FFys
- det(1 — TFrob2 |H'(A)) = (1 — 2T 4 25T?)?
- As over [Fys5 is isogenous to a square of an elliptic curve

« Endg A2 ~ My(Q(v/—6))
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Example continued

A=Jac(y? = x> —x* +4x> —8x% +5x — 1) (262144.d.5242881)

For p =5, Ls(T) = 1—2T? + 25T% and:

- all endomorphisms of As are defined over FFys

- det(1 — TFrob2 |H'(A)) = (1 — 2T 4 25T?)?

- As over [Fys5 is isogenous to a square of an elliptic curve

« Endg A2 ~ My(Q(v/—6))
Forp =7, Ly(T) = 1+ 6T? + 49T*, and:

- all endomorphisms of A; are defined over Fg

- det(1 — TFrob3 |[H'(A)) = (1+ 6T + 497%)?

- A; over g is isogenous to a square of an elliptic curve

* Endg A2' =~ M,(Q(+/~10))


http://www.lmfdb.org/Genus2Curve/Q/262144/d/524288/1

Example continued

A=Jac(y? = x> —x* +4x> —8x% +5x — 1) (262144.d.5242881)
For p =5, Ls(T) = 1—2T? + 25T% and:
- all endomorphisms of As are defined over FFys
- det(1 — TFrob2 |H'(A)) = (1 — 2T 4 25T?)?
- As over [Fys5 is isogenous to a square of an elliptic curve
« Endg A2 ~ My(Q(v/—6))
Forp =7, L7(T) =14 6T% + 49T* and:
- all endomorphisms of A; are defined over Fg
- det(1 — TFrob3 |[H'(A)) = (1+ 6T + 497%)?
- A; over g is isogenous to a square of an elliptic curve
* Endg A2 ~ My(Q(v/—10))
= EndRAal 75 Mz(@)


http://www.lmfdb.org/Genus2Curve/Q/262144/d/524288/1

Same L,, different approach

We could have looked at the Neron-Severi lattice NS(A).

Endg(A)! ~ NS(A) @@ NS(A%') < NS(AZ)
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Same L,, different approach

We could have looked at the Neron-Severi lattice NS(A).
Endg(A)! ~ NS(A)® Q@ NS(A%') — NS(A3)
- rkNS(A?) € {1,2,3, 4}
- rkNS(A3') € {2,4,6}
Example
- rk NS(A2") = rk NS(A2) = 4
_ disc NS(A2") = —6 mod Q*?

= rkNS(A%) < 3
disc NS(A2') = —10 mod Q*?

Fact
By a theorem of Charles, we know that at some point this method will attain a
tight upper bound for rk NS(A2").



Real endomorphisms algebras and Picard numbers

Abelian surface \ Endr A% | rk NS(A2")
square of CM elliptic curve M;,(C) 4

- QM abelian surface M;,(R) 3

- square of non-CM elliptic curve

- CM abelian surface CxC 2

- product of CM elliptic curves

product of CM and non-CM elliptic curves | C x R 2

- RM abelian surface R xR 2

- product of non-CM elliptic curves

generic abelian surface R 1
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Let K be a numberfield such that End Ax = End A?'



Higher genus

Let K be a numberfield such that End Ax = End A?', then
© Ak~ H/t:1 A?ir
- A: unique and simple up to isogeny (over K),
- Bj := EndgA; central simple algebra over L; := Z(B;)),
. dimL/ B,‘ = 81-2,
+ Endg Ay = [T, M (B)



Higher genus

Let K be a numberfield such that End Ax = End A%', then
© Ax ~ H$:1 Al

- A unique aéld simple up to isogeny (over K),

- Bj := EndgA; central simple algebra over L; := Z(B;)),

- dim, B; = €7,

- Endg Ax = [Ty My, (B)
Theorem (C-Mascot-Sijsling-Voight, C-Lombardo-Voight)
lfMltJmford—Tate conjecture holds for A, then we can compute

- {(en;, nidim A},
o L,

This is practical and its done by counting points (=computing L,)



Real endomorphisms algebras, {e;n;, n;idim A}

=11

and dim L;

Abelian surface \ Endg A% \ tuples \ dimL;
square of CM elliptic crv M;,(C) {(2,2)} 2

- QM abelian surface M, (R) {(2,2)} 1

- square of non-CM elliptic crv

- CM abelian surface CxC {(1,2)} 4

- product of CM elliptic crv {0,1,(1, D} | 2,2
CM x non-CM elliptic crvs CxR | {(1,1),(1,1)} | 2,1
- RM abelian surface R xR {(,2)} 2

- prod. of non-CM elliptic crv {0,M,(1,D} | 1,1
generic abelian surface R {(1,M)} 1




Example continued: QM vs (non-CM)?

A=Jac(y? = x> —x" +4x> —8x* +5x — 1) (LMFDB label: 262144.d.5242881)

* Endg A3 ~ My(Q(v/-3))

N EnCIQAaI ~ MQ(Q(M))

+ = Endg A?' # M,(C)
Question

Write B := Endq A% and assume that B is a quaternion algebra.
Can we guess disc B?
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If ¢ is ramified in B = ¢ cannot split in Q(Frobp)
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A=Jac(y? = x> —x" +4x> —8x* +5x — 1) (LMFDB label: 262144.d.5242881)

* Endg A3 ~ My(Q(v/-3))
N EnCIQAaI ~ MQ(Q(M))
+ = Endg A?' # M,(C)

Question

Write B := Endq A% and assume that B is a quaternion algebra.
Can we guess disc B?

If ¢ is ramified in B = ¢ cannot split in Q(Frobp)

- 5,13,171disc B, as they split in Q(v/—3)
- 7,11tdisc B, as they split in Q(v/—6)

We can rule out all the primes except 2 and 3 (up to some bnd).
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Example continued: QM vs (non-CM)?

A=Jac(y? = x> —x" +4x> —8x* +5x — 1) (LMFDB label: 262144.d.5242881)

* Endg A3 ~ My(Q(v/-3))
N EnCIQAaI ~ MQ(Q(M))
+ = Endg A?' # M,(C)

Question

Write B := Endq A% and assume that B is a quaternion algebra.
Can we guess disc B?

If ¢ is ramified in B = ¢ cannot split in Q(Frobp)

- 5,13,171disc B, as they split in Q(v/—3)
- 7,11tdisc B, as they split in Q(v/—6)

We can rule out all the primes except 2 and 3 (up to some bnd). Indeed, disc B = 6.


http://www.lmfdb.org/Genus2Curve/Q/262144/d/524288/1

Using Sato-Tate distributions

Abelian surface | Endr A | ikNS(A) || Malar] £ E[a2, /p] | Mifas] £ E[as,/p]
Ccm? M, (C) 4 8 4
- QM abelian surface M,(R) 3 4 3
- (non-CMm)?

- CM abelian surface CxC 2 4 2
+ CM x CM

CM x non-CM CxR 2 3 2
- RM abelian surf. R xR 2 2 2
- non-CM x non-CM

generic abelian surface R 1 1 1
Question

Can you spot the pattern?



Arithmetic invariants from Sato-Tate moments

Theorem (Fité-C-Sutherland)
Let A be an abelian variety, then we have

* rk End(A) = M[a1] = Egr,[tr?]
- rkNS(A) = My[a;] = Egr, [tr(A?)]

This does not depend on any classification.
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Theorem (Fité-C-Sutherland)
Let X be a K3 surface, then we have

rk NS(X) = M1[G1] = ESTX[tr]



Arithmetic invariants from Sato-Tate moments

Theorem (Fité-C-Sutherland)
Let A be an abelian variety, then we have

- tkEnd(A) = My[a1] = Egr, [tr2] = Eftr(Froby, p~"/2|H1(A))?]
- tkNS(A) = My[a,] = Egr, [tr(A2)] = E[tr(Froby, [H2(A)(1))]

This does not depend on any classification.

Theorem (Fité-C-Sutherland)
Let X be a K3 surface, then we have

rk NS(X) = Mi[aq] = Egp,[tr] L2 E[tr(Frob, IH2(X)(1))]



K3 surfaces are a possible generalization of elliptic curves
They may arise in many ways:
- smooth quartic surfaces in P3
X:f(x,y,z,w) =0, degf=4
- double cover of P? branched over a sextic curve

X:w2=f(x,y,2), degf=6



“Dans la seconde partie de mon rapport, il s’agit des variétés kahlériennes
dites K3, ainsi nommeées en ['honneur de Kummer, Kahler, Kodaira et de la belle
montagne K2 au Cachemire” —Andre Weil (Photo credit: Wagas Anees)
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K3 surfaces are a possible generalization of elliptic curves
They may arise in many ways:
- smooth quartic surfaces in P3
X:f(x,y,z,w) =0, degf=14
- double cover of P? branched over a sextic curve
X:w? =f(x,y,2), degf=6

Can we play similar game as before?
In this case, instead of studying #Xp or tr Frob, we study

p— rkNSXp?' € {2,4,...,22}

We are still counting points
rk NS X, = Zomh_c/p Zp(X,T), where Z,(X, T) := exp (

> #X(Fpr T/r)

r=1



The analogous problem for elliptic curves

X/Q a K3 surface
p— rkNS X, € {2,4,...,22}

This is analogous to studying:

p— rkEnd E3' € {2,4}



The analogous problem for elliptic curves

X/Q a K3 surface
p— rkNS X, € {2,4,...,22}
This is analogous to studying:
p— rkEnd E3' € {2,4}
Recall that:
c rkEndEgI =4<+<=0a,=0
7 . .
~ — If Eis non-CM (Lang-Trotter
- Prob(a, =0) =4 VP (Lang )
1/2 if E has CM by Q(v/—d)

In the latter case,
{p:a, =0} ={p:pisramified or inert in Q(v/—d)}



The analogous problem for abelian surfaces

X/Q a K3 surface
p— rkNS X, € {2,4,...,22}

For an abelian surface A we have:

NS(A)g =~ {# € End(A)g : ¢! = ¢},

where 1 denotes the Rosati involution.



The analogous problem for abelian surfaces

X/Q a K3 surface
p— rkNS X, € {2,4,...,22}

For an abelian surface A we have:
NS(A)g = {¢ € End(A)g : ¢ = ¢},
where  denotes the Rosati involution. Thus for A/Q this is equivalent to
p — rkEnd(A2)], = rkNS A2 € {2, 4,6}
Now

- tkNSAS' > 4 = A3 ~ 2
- rkNS A3l = 6 <= A3 ~ E2 E supersingular, i.e, ap =0

If rk NS A2' = 1, what is the “probability” of rk NSA;' > 47



Néron-Severi group

- NS e = Néron-Severi group of e ~ {curves on e}/ ~

- p(e) =rkNSe
* Xp:=Xmodp
X NS x3! o) €{1,2,...,20}
A

T

Xp ——=NSXp? ——p(X,?)  €{2,4,...22}



Néron-Severi group

- NS e = Néron-Severi group of e ~ {curves on e}/ ~

- p(e) =rkNSe
* Xp = Xmod p
X NS X! p(X®)  €{1,2,...,20}
A

T

Xp ——=NSXp? ——p(X,?)  €{2,4,...22}

Theorem (Charles)
For infinitely many p we have p(X,®') = ming p(X4").



The Problem

X NS x3! o) €{1,2,...,20}
A

T

Xp —=NSXp? —— p(Xp?")  €{2,4,...22}

Theorem (Charles)
For infinitely many p we have p(X,®') = ming p(X4").

What can we say about:

= {p ; p(XpaI) > ming p(an')}



The Problem

X NS x3! o) €{1,2,...,20}
A

T

Xp —=NSXp? —— p(Xp?")  €{2,4,...22}

Theorem (Charles)
For infinitely many p we have p(X,®') = ming p(X4").

What can we say about:

= {p ; p(XpaI) > ming p(an')}

< B: c
- (X, B) = #{p < B:p € Myump(X)} 5 B — 6

#{p < B}




Two generic K3 surfaces with p(X?') =1
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Two generic K3 surfaces with p(X?') =1
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Two generic K3 surfaces with p(X?') =1
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— Prob(p € Mjump(X)) L 1/v/p



Three K3 surfaces with p(X?') =2
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Do you see an obvious trend?



Three K3 surfaces with p(X?') =2
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Do you see an obvious trend?

Could it be related to some integer being a square modulo p?



We can explain the 1/2

Theorem (C, C-Elsenhans—Jahnel)
If p(X®) = ming p(X,"), then there is a dx € Z such that:

{p >2:pinertin Q(M)} & [zl

In general dx is not a square, and it can be described as the discriminant of a
sub Galois representation associated to X.
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If p(X®) = ming p(X,"), then there is a dx € Z such that:

{p >2:pinertin Q(@)} & [zl

In general dx is not a square, and it can be described as the discriminant of a
sub Galois representation associated to X.

Corollary

If dy is not a square:
- liminfg_ o v(X,B) > 1/2

- X2 has infinitely many rational curves.



We can explain the 1/2

Theorem (C, C-Elsenhans—Jahnel)
If p(X®) = ming p(X,"), then there is a dx € Z such that:

{p >2:pinertin Q(\/CTX)} & [zl

In general dx is not a square, and it can be described as the discriminant of a
sub Galois representation associated to X.

Corollary
If dx is not a square:
- liminfg_ o v(X,B) > 1/2

- X2 has infinitely many rational curves.
D3 = — 1-5-151 - 22490817357414371041 - 387308497430149337233666358807996260780875056740850984213276970343278935342068889706146733313789

Dy = 53 - 2624174618795407 - 512854561846964817139494202072778341 - 1215218370089028769076718102126921744353362873 - 6847124397158950456921300435158
D5 = —1- 47 -3109 - 4969 - 14857095849982608071 - 445410277660928347762586764331874432202584688016149 - 65865270852505269999342419873884248599811



Experimental data for p(X*') = 2 (again)

What if we ignore {p > 2: p inertin Q(v/dx)} C Mjump(X)?
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Experimental data for p(X*') = 2 (again)
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if dx is not a square modulo p

otherwise



