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Wallpaper symmetries

Given a lattice generated by φ1, φ2 ∈ C

Λ = Z · φ1 + Z · φ2 =

What are the possible symmetries?

What if we ask about rotations around 0?

• {±1}, e.g., generic lattice
• {±1,±i}, e.g., square lattice Z · 1+ Z · i
• e±πi/3, e.g., hexagonal
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From wallpaper to a doughnut

By forming the quotient, we obtain a torus T := C/Λ '

Translations in Λ are now are trivial on T.
Question
Which automorphisms z 7→ α z, for α ∈ C, descend to T?

In other words, when there is a R ∈ M2(Z) such that

α
(
φ1 φ2

)
=

(
φ1 φ2

)
R?

Symmetries of T correspond to the invertible maps, i.e., R ∈ GL2(Z).

By dropping the invertible requirement we get endomorphisms, and these form
an algebra!

For example, Z ⊆ End(T) ' End(Λ), via multiplication by n (as a scalar or matrix).



From doughnuts to elliptic curves

Today, we are particularly interested in solving equations of the form

α
(
φi,j

)
i,j
=

(
φi,j

)
i,j
R, α ∈ Mg(Qal), R ∈ M2g(Z)

where φ are integrals capturing geometric and arithmetic information.

For example:
φ =

∮
γ
ω,

where γ ∈ H1(C,Z) ' Z2g and ω ∈ H1(C,ΩC) ' Qg, for a genus g curve C.

For example, if g = 1, we may take C: y2 = f (x), with deg f = 3, and ω = dx/
√
f (x).

In this case, C is an elliptic curve, named after the elliptic integral
∫
dx/

√
f (x).
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Elliptic curves group structure

E: y2 + y = x3 − x2

P+ Q+ R ∼ 0



Elliptic curves group structure

E: y2 + y = x3 − x2, Z/5Z ' E(Q).
P+ Q+ R ∼ 0



Endomorphisms of elliptic curves

There are two types of elliptic curves:

Ordinary: End EQal = Z, i.e., the only endomorphisms are multiplication by n.

Complex Multiplication: Z ( End EQal ( Q(
√
−d)

In other words, if φ2/φ1 ∈ Q(
√
−d), then

α
(
φ1 φ2

)
=

(
φ1 φ2

)
R, α ∈ Qal, R ∈ M2(Z)

has solutions with α ∈ Q(
√
−d).

Elliptic curves with CM are isolated points in their moduli space ' P1.

The possible list of d is finite. If E/Q, then d ∈ {3, 4, 7, 8, 11, 19, 43, 67, 163}.
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Jacobians

Curves no longer have a group structure for g > 1.

Instead, we associate to them an abelian variety called the Jacobian A := Jac(C),
the group of divisors of degree 0 on C up to linear equivalence.

When g = 1 and C = E is an elliptic curve, we have E ' Jac(E) by P 7→ [P−∞].

P+ Q+ R ∼ 0

In general, we can think about adding tuples of g-points.
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Addition on the Jacobian of a genus 2 curve, e.g, C : y2 = x5 − 5x3 + 4x + 1
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Addition on the Jacobian of a genus 2 curve, e.g, C : y2 = x5 − 5x3 + 4x + 1

-3 -2 -1 1 2 3

-10

-5

5

10

D3 :=
(
−
√
209−23
32 , −115

√
209−1333
2048

)
+
(√

209−23
32 , 115

√
209−1333
2048

)



Our setup

Let C be a nice (smooth, projective, geometrically integral) curve over k of genus
g given by equations. Let J be the Jacobian of C.

Goal
Given the equations of C, compute the endomorphism ring End Jal.

• Finding interesting examples. Generically End Jal = Z.
• If End J contains non-trivial idempotents, we can hope to decompose J into
abelian varieties of smaller dimension.

• If End J is non-trivial, then this allows us to find a modular form that
describes the arithmetic properties of J and C.

• Can be used to show transcendence of 1-periods (Ouaknine–Worrell–Sertöz)
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An analytic description of the Jacobian

Via a chosen embedding of k into C and a projection into P2, we can consider C
as a Riemann surface, and

JC = H0(C,ΩC)∨/H1(C,Z) = Cg/Λ,

where we pick a k-basis for H0(C,ΩC) = kω1 ⊕ . . .⊕ kωg, hence,

Λ =

{(∫
γ
ω1, . . . ,

∫
γ
ωg

)
∈ Cg : γ ∈ H1(C,Z)

}
∼= Z2g.

In other words, J is a complex torus (plus a polarization).

• We can calculate Λ numerically by taking a plane model
• Using Λ, we can hope to understand J analytically…
and perhaps even be able to transfer these results to the algebraic setting.
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Heuristic solution

By picking a k-basis for H0(C,ΩC), we have

End(J) = {T ∈ Mg(k) | TΛ ⊂ Λ}

Hence, if Π is a period matrix for C, i.e., Λ = ΠZ2g, then we are reduced to finding
a Z-basis of the solutions (T,R) to

TΠ = ΠR, T ∈ Mg(kal), R ∈ M2g(Z).

Heuristically, via lattice reduction algorithms, we can find such a Z-basis.

There is no obvious way to prove that our guesses are actually correct.
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Representing endomorphisms via correspondences

αC :C
AJ

−−−−−−−−−→ J
α

−−−−−−−−−→ J −−−−−→ Symg(C)

P 7→ {Q1, . . . ,Qg} ⇐⇒ α([P− P0]) =
[ g∑
i=1

Qi − P0

]
This traces out a divisor on C × C, which determines α.

The equations of this divisor is a certificate of containment α for α ∈ End Jal.

Theorem (C–Mascot–Sijsling–Voight)
We give an algorithm for

Mg(kal) 3 α 7→

true if α ∈ End Jal, and a certificate α

false if α /∈ End Jal

By interpolation via αC or by locally solving a differential equation on C × C.
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Rigorous Endomorphism ring

Theorem (C–Mascot–Sijsling–Voight, C–Lombardo–Voight, C–Sertöz)

We give an algorithm that computes End Jal with a certificate X .
This is a day/night algorithm:
• By day, we compute Λ ⊂ Cg numerically and then certify B ⊆ End Jal.

• By night, we search for evidence that End Jal ⊆ B.
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be as random as End Jal allows it, and we get a sharp upperbound.



Rigorous Endomorphism ring

Theorem (C–Mascot–Sijsling–Voight, C–Lombardo–Voight, C–Sertöz)

We give an algorithm that computes End Jal with a certificate X .
This is a day/night algorithm:
• By day, we compute Λ ⊂ Cg numerically and then certify B ⊆ End Jal.
• By night, we search for evidence that End Jal ⊆ B.

• Studying JFp for several p. Under the Mumford–Tate conjecture its structure will
be as random as End Jal allows it, and we get a sharp upperbound.

• Studying what Hodge cycles lift from Z/pnZ to the limit Zp := lim←−n Z/p
nZ.



Examples

• We have verified, decomposed and matched the 66 158 curves over Q of
genus 2 in the L-functions and modular form database LMFDB.org

• The algorithm verifies that the following genus 4 curve over Q(
√
3)

0 = −8x2 + 8xy + 17y2 − 34xz − 2yz − 28z2 − 10xw − 9yw − 18zw + 2w2,
0 = 4x3 − 6x2y − 6xy2 + 12x2z + 6xyz + 24y2z − 12xz2 − 24z3 + 2x2w + 7xyw

+ 4y2w + 4xzw − 13yzw − 8z2w − 20xw2 − 3zw2 − 12w3

has real multiplication by the maximal order of Q(x)/(x4 − x3 − 3x2 + x + 1).
We used this in a recent project, where we show that the 2-isogeny field of Af
solves the inverse Galois problem for PSL2(F16)o C2 ' 17T7. 32 MB X .

• Code available: https://github.com/edgarcosta/endomorphisms

LMFDB.org
https://github.com/edgarcosta/endomorphisms
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What is a K3 surface?

K3 surfaces are one of the natural generalizations of elliptic curves.

There are several equivalent ways to define K3 surfaces.

Definition
An algebraic K3 surface is a smooth projective simply-connected surface with
trivial canonical class.

They may arise in many ways:

• smooth quartic surface in P3

X : f (x, y, z,w) = 0, deg f = 4

• double cover of P2 branched over a sextic curve P(3, 1, 1, 1)

X : w2 = f (x, y, z), deg f = 6
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What is a K3 surface?
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X : f (x, y, z,w) = 0, deg f = 4

• double cover of P2 branched over a sextic curve P(3, 1, 1, 1)

X : w2 = f (x, y, z), deg f = 6

e.g. Fermat like surface w2 = x6 + y6 + z6.



Picard lattice of a K3 surface

Let X be a K3 surface defined over k ⊂ C. We view X also as a complex manifold.

NS Xal ' Pic Xal ' Z〈algebraic curves in X〉/〈linear equivalences〉 ⊂ H2(X,Z)

Over Qal, we have

Pic Xal ' H1,1(X) ∩ H2(X,Z) ( H2(X,Z) ' (−E8)2 ⊕ U3 ' Z22

Thus, 1 ≤ rk Pic Xal ≤ 20 = dimH1,1(X).

A generic K3 surface has rk Pic Xal = 1.
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A generic K3 surface has rk Pic Xal = 1.
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From the equations of X, compute Pic Xal ⊂ H2(X,Z) as a Gal(kal/k)-module.

“The evaluation of ρ for a given surface presents in general grave difficulties.” — Zariski

“New and interesting” Galois representations arise from T(X):

H2(X,Q) ' Pic(Xal)Q ⊕ T(X)Q

Useful for studying rational points, via a potential Brauer–Manin obstruction:

H1(Gal(kal/k),Pic Xal) ' Br1(X)/Br0(X)
X(k) ⊂ X(Ak)Br ⊂ X(Ak)
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An analytic approach

Lefschetz (1,1) theorem
A homology class γ ∈ H2(X,Z) is in Pic Xal if and only if

∫
γ ωX = 0, where ωX is

the nonzero holomorphic 2-form ωX on X, unique up to scaling.

Hence, if Π = [
∫
γ ωX]γ∈H2(X,Z) ∈ C22 is the period vector for ωX , then we are

reduced to finding a (saturated) lattice Λ ⊂ H2(X,Z) of solutions

ΠR = 0, R ∈ H2(X,Z) ' Z22.

• Unlike for curves, effective algorithms to compute Π have only become
available very recently.

• Heuristically, via lattice reduction algorithms, we can find Λ ⊂ H2(X,Z).
• There is no obvious way to prove that our guesses are actually correct.
• Nonetheless, given Π as a ball, one can compute B� 0 such that such that

Pic(Xal)|B := Z〈γ ∈ Pic Xal | −γ2prim < B〉 ⊆ Λ (Lairez–Sertöz).



An analytic approach

Lefschetz (1,1) theorem
A homology class γ ∈ H2(X,Z) is in Pic Xal if and only if

∫
γ ωX = 0, where ωX is

the nonzero holomorphic 2-form ωX on X, unique up to scaling.

Hence, if Π = [
∫
γ ωX]γ∈H2(X,Z) ∈ C22 is the period vector for ωX , then we are

reduced to finding a (saturated) lattice Λ ⊂ H2(X,Z) of solutions

ΠR = 0, R ∈ H2(X,Z) ' Z22.

• Unlike for curves, effective algorithms to compute Π have only become
available very recently.

• Heuristically, via lattice reduction algorithms, we can find Λ ⊂ H2(X,Z).
• There is no obvious way to prove that our guesses are actually correct.
• Nonetheless, given Π as a ball, one can compute B� 0 such that such that

Pic(Xal)|B := Z〈γ ∈ Pic Xal | −γ2prim < B〉 ⊆ Λ (Lairez–Sertöz).



An analytic approach

Lefschetz (1,1) theorem
A homology class γ ∈ H2(X,Z) is in Pic Xal if and only if

∫
γ ωX = 0, where ωX is

the nonzero holomorphic 2-form ωX on X, unique up to scaling.

Hence, if Π = [
∫
γ ωX]γ∈H2(X,Z) ∈ C22 is the period vector for ωX , then we are

reduced to finding a (saturated) lattice Λ ⊂ H2(X,Z) of solutions

ΠR = 0, R ∈ H2(X,Z) ' Z22.

• Unlike for curves, effective algorithms to compute Π have only become
available very recently.

• Heuristically, via lattice reduction algorithms, we can find Λ ⊂ H2(X,Z).
• There is no obvious way to prove that our guesses are actually correct.

• Nonetheless, given Π as a ball, one can compute B� 0 such that such that

Pic(Xal)|B := Z〈γ ∈ Pic Xal | −γ2prim < B〉 ⊆ Λ (Lairez–Sertöz).



An analytic approach

Lefschetz (1,1) theorem
A homology class γ ∈ H2(X,Z) is in Pic Xal if and only if

∫
γ ωX = 0, where ωX is

the nonzero holomorphic 2-form ωX on X, unique up to scaling.

Hence, if Π = [
∫
γ ωX]γ∈H2(X,Z) ∈ C22 is the period vector for ωX , then we are

reduced to finding a (saturated) lattice Λ ⊂ H2(X,Z) of solutions

ΠR = 0, R ∈ H2(X,Z) ' Z22.

• Unlike for curves, effective algorithms to compute Π have only become
available very recently.

• Heuristically, via lattice reduction algorithms, we can find Λ ⊂ H2(X,Z).
• There is no obvious way to prove that our guesses are actually correct.
• Nonetheless, given Π as a ball, one can compute B� 0 such that such that

Pic(Xal)|B := Z〈γ ∈ Pic Xal | −γ2prim < B〉 ⊆ Λ (Lairez–Sertöz).



A running example inspired by Klein–Mukai

X : x4 + xyzw + y3z + yw3 + z3w = 0 ⊂ P3

• It is a fiber in a pencil that has generic rank 19, thus rk Pic Xal ≥ 19.

• Matching upper bounds can be deduced by positive characteristic methods.
• No known explicit descriptions of Pic Xal.
• Heuristically, one computes Λ ' Z19 such that

ΠΛ ≈ 0 Pic(Xal)|B ⊆ Λ
?
⊆ Pic Xal.

• We can compute Aut Λ, the isomorphism class seems to be F7 × PGL(2, 7).
• No small rational curves: There are no lines, no conics, no twisted cubics.
• The “smallest” non-trivial curves that appear are smooth rational quartics.
• Lattice computations with Λ predict that there are

133056
smooth rational quartics spanning Λ.
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Reconstructing isolated curves from their Hodge classes

Turns out one can compute a bit more for hypersurfaces

ϕ: H2(X,Z)× H2dR(X/k)→ C (γ, ω) 7 −→
∫
γ
ω

Note, if γ ∈ Pic Xal, then 1
2πi

∫
γ ω ∈ k

al for ω ∈ F1H2dR(X/k).

Theorem (Movasati–Sertöz)
If γ = [C] ∈ H2(X,Z) for a curve C ⊂ X then from 1

2πi(
∫
γ ω)ω∈F1 one can construct

an ideal Iγ such that I(C) ( Iγ .
In favorable circumstances we expect low order equations in Iγ to span I(C).

Theorem (Cifani–Pirola–Schlesinger)
For a smooth rational quartic curve C ⊂ X we have that the equation of the
quadric surface containing C generates I[C],2, i.e., I(C)2 = I[C],2.
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Reconstructing quadric surfaces

X : x4 + xyzw + y3z + yw3 + z3w = 0 ⊂ P3

Pic(Xal)|B ⊆ Λ
?
⊆ Pic Xal

Goal
Reconstruct the quadric surfaces containing some of the 133056 smooth
rational quartics in X using the curve classes.

• Fortunately, there is a small Aut(Λ) orbit of size 336:
133056 = 336+ 1008+ 1176+ 3528 · 3+ 4704 · 3+ 7056 · 9+ 14112 · 3

• For each quartic curve C ⊂ X, we can compute

I[C],2 = 〈a0x2 + · · ·+ a9w2〉C

that defines a quadric surface Q, such that Q ∩ X = C ∪ C.
Hence, we expect an orbit of 168 quadrics each containing a pair of quartics.

• We aim reconstruct the ten (algebraic!) coefficients of these quadrics.
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Reconstructing quadric surfaces

Goal
Reconstruct the ten coefficients ai of these quadrics in a Galois orbit of size 168.

• The minimal polynomials have large height about 9k characters, e.g.:
x168 − 10014013832542203812872613924739x161

+ 171047690745503707515328576627906817785436888130925209472262244x154

−1268317331496745879603035032448157273146519836562713924560050631153969519297207668270922371313x147

+23237703563539410755436556575134206593366430461423708193774287327245213403024087108979694756912313 · · ·

• Every computation must be done extremely selectively!
• We are presented with the same 168 degree field L in 9 different ways.
The abstract isomorphism problem is hopeless. 😨
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∏
σ(x − σ(ai)) ∈ Q[x] independently.
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Isomorphism problem

Goal
Construct Q(ak) ↪→ L, where L = Q(a0, . . . ,a9) = Q(a0).

In our case, we have all the compatible embeddings

σi : Q(ak) ↪→ L ↪→ C

Thus the isomorphisms is given is the solution of the following linear system

{σi(ak)j}i,j · v = {σi(a0)}i, v ∈ Q168

This is numerically stable, as {σi(ak)j}i,j is a Vandermonde matrix, and one can
verify the solution once found.
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Intersecting the quadric surfaces with the K3 surface

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

Goal
Show that Q ∩ X decomposes into two quartic curves.

• It suffices to show that the singular locus S of Q ∩ X consists of 10 distinct
reduced points.

• Hopeless to do this directly! Operations in L are seriously expensive!
Linear algebra😰 Gröbner basis😱

• Working over Fp we find 10 distinct points.
Hence, S is zero-dimensional and reduced, and deg S ≤ 10.

• We conclude deg S = 10 via Gotzmann regularity theorem, by checking that
dim L[x, y, z,w]•/I• = 10 for • = 6, 7, where V(I) = S.
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• It suffices to show that the singular locus S of Q ∩ X consists of 10 distinct
reduced points.

• Hopeless to do this directly! Operations in L are seriously expensive!
Linear algebra😰 Gröbner basis😱
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Certifying Pic Xal = Λ

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

ΛQ := 〈[C] : C ⊂ σ(Q) ∩ X, σ : L ↪→ C〉 ⊆ Pic(Xal)|B ⊆ Λ
?
⊆ Pic Xal

The inclusion ΛQ ⊆ Λ is not explicit!

Nonetheless, Pic Xal and Λ are saturated in H2(X,Z).

Hence, it is sufficient to show that rk ΛQ = rkΛ = 19.

We can do this in two ways:

• Compute the intersections of these 336 curves with each other over Fp.
• Certify that these correspond to the original classes.
Showing that there are at most 66528 distinct quadrics. Can be done over C.
This establishes a bijection between these quadric surfaces and the 168
pairs of quartic curve classes that they correspond to.

Pic Xal = Λ X
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Computing the Galois action

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

Q ∩ X decomposes into a pair of quartics over K a quadratic extension of L.

Goal
Compute K and Gal(K/Q) acting on ΛQ.

Via the identification with the original classes we have 1
2πi

(∫
C ω

)
ω∈F1 ∈ K

21.

These can be reconstructed in the same fashion as we reconstructed ai.

Unclear how to certify this step! What are the denominators of 1
2πi

∫
C ω?

Can one certifiable K using geometry instead of Gröbner basis?
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Summary

Today we saw how solving for

TΠX = ΠXR, T ∈ Mn(kal), R ∈ Mm(Z)

heuristically reveals both arithmetic and the geometry X.

And how convert these heuristic insights into rigorous mathematical statements:

• If X = Jac(C), we give an algorithm to compute End Jal.
• If X is a K3 surface, we give an algorithm to compute the saturation of the
lattice generated by rational curves of degree up to 4.

Theorem (C–Sertöz)
The K3 surface X : x4 + xyzw + y3z + yw3 + z3w = 0 ⊂ P3 has Pic Xal = Λ,
generated by quartics over a quadratic extension of L := Q({ai}i).


