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“Dans la seconde partie de mon rapport, il s’agit des variétés kählériennes
dites K3, ainsi nommées en l’honneur de Kummer, Kähler, Kodaira et de la belle
montagne K2 au Cachemire.” —André Weil (Photo credit: Waqas Anees)



What is a K3 surface?

There are several equivalent ways to define K3 surfaces.

Definition
An algebraic K3 surface is a smooth projective simply-connected surface with
trivial canonical class.

They may arise in many ways:

• smooth quartic surface in P3

X : f (x, y, z,w) = 0, deg f = 4

• double cover of P2 branched over a sextic curve P(3, 1, 1, 1)

X : w2 = f (x, y, z), deg f = 6

• Kummer surfaces, Kummer(A) := Ã/±, with A an abelian surface.
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• smooth quartic surface in P3

X : f (x, y, z,w) = 0, deg f = 4
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Picard lattice of a K3 surface

Let X be a K3 surface defined over k ⊂ C. We view X also as a complex manifold.

NS(Xal) ' Pic Xal ' Z〈algebraic curves in X〉/〈linear equivalences〉 ⊂ H2(X,Z)

Plays a similar role as End(A) for an abelian variety A

NS(A)Q ' {φ ∈ End(A)Q : φ† = φ},

where † denotes the Rosati involution.

Over Qal, we have

Pic(Xal) ' H1,1(X) ∩ H2(X,Z) ( H2(X,Z) ' (−E8)2 ⊕ U3 ' Z22

and rk Pic Xal ∈ {1, 2, . . . , 20}. For a generic K3 surface we have rk Pic Xal = 1

“New and interesting” Galois representations arise from T(X).

H2(X,Q) ' Pic(Xal)Q ⊕ T(X)Q
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Picard lattice of a K3 surface

Let X be a K3 surface defined over k ⊂ C. We view X also as a complex manifold.

Pic Xal ' Z〈algebraic curves in X〉/〈linear equivalences〉 ⊂ H2(X,Z)

Goal
From the equations of X, compute Pic Xal ⊂ H2(X,Z) as a Gal(kal/k)-module.

“The evaluation of ρ for a given surface presents in general grave difficulties.” — Zariski

• Useful for studying the existence of a Brauer–Manin obstruction on X, as

H1(Gal(kal/k),Pic Xal) ' Br1(X)/Br0(X).

• Over a finite field, Tate conjecture (proven) gives us rk Pic X from

det(1− t Frob|H2(X,Q`)) ∈ Z[t]

and Artin–Tate conjecture (proven) also gives disc Pic Xal modulo squares.
• Over a number field there are several in principle algorithms to compute
rk Pic X or even Pic X. These involve, a day/night algorithm:

• by day: find curve classes in Pic X;
• by night: restrict the ambient space for Pic X ⊂ H2(X,Z).
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An analytic approach

Lefschetz (1,1) theorem
A homology class γ ∈ H2(X,Z) is in Pic Xal if and only if

∫
γ ωX = 0, where ωX is

the nonzero holomorphic 2-form ωX on X, unique up to scaling.

Hence, if Π ∈ C22 is the period vector for ωX , i.e., [
∫
γ ωX]γ∈H2(X,Z), then we are

reduced to finding a lattice Λ ⊂ H2(X,Z) of solutions

ΠR = 0, R ∈ H2(X,Z) ' Z22.

• Π can be computed via deformation for projective hypersurfaces (Sertöz).
• Heuristically, via lattice reduction algorithms, we can find Λ ⊂ H2(X,Z).
• There is no obvious way to prove that our guesses are actually correct.
• Nonetheless, a posteriori, one can compute B� 0 such that

Pic(Xal)|B := Z〈γ ∈ Pic Xal | −γ2prim < B〉 ⊆ Λ (Lairez–Sertöz).
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A running example inspired by Klein–Mukai

X : x4 + xyzw + y3z + yw3 + z3w = 0 ⊂ P3

• It is a fiber in a pencil that has generic rank 19 and matching upper bounds
can be deduced by positive characteristic methods.

• No known explicit descriptions of Pic Xal.
• Heuristically, one computes Λ ' Z19 such that

ΠΛ ≈ 0 Pic(Xal)|B ⊆ Λ
?
⊆ Pic Xal.

• We can compute Aut Λ, the isomorphism class seems to be F7 × PGL(2, 7).
• No small rational curves: There are no lines, no conics, no twisted cubics.
• The “smallest” non-trivial curves that appear are smooth rational quartics.
• Lattice computations with Λ predict that there are

133056
smooth rational quartics spanning Λ.
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Reconstructing isolated curves from their Hodge classes

Turns out one can compute a bit more for hypersurfaces

ϕ:H2(X,Z)× H2dR(X/k) → C (γ, ω) 7 −→
∫
γ
ω

Note, if γ ∈ Pic Xal, then 1
2πi

∫
γ ω ∈ kal for ω ∈ F1H2dR(X/k).

Theorem (Movasati–Sertöz)
If γ = [Y] ∈ H2(X,Z) for a curve Y ⊂ X then from 1

2πi(
∫
γ ω)ω∈F1 one can construct

an ideal Iγ such that I(Y) ( Iγ .
In favorable circumstances we expect low order equations in Iγ to span I(Y).
For example, smooth rational curves of degree up to 4 in K3s.

Theorem (Cifani–Pirola–Schlesinger)
For a smooth rational quartic Y ⊂ X we have that the equation of the quadric
containing Y generates I[Y],2, i.e., I(Y)2 = I[Y],2.
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Reconstructing quadric equations

X : x4 + xyzw + y3z + yw3 + z3w = 0 ⊂ P3

Pic(Xal)|B ⊆ Λ
?
⊆ Pic Xal

Goal
Reconstruct the quadrics containing some of the 133056 smooth rational
quartics in X using the curve classes.

• Fortunately, there is a small Aut(Λ) orbit of size 336 (Elkies).
• Hence, we expect an orbit of 168 quadrics each containing a pair of quartics.
• We aim reconstruct the ten (algebraic!) coefficients of these quadrics.
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Reconstructing quadric equations

Goal
Reconstruct the ten coefficients of these quadrics in a Galois orbit of size 168.

• The minimal polynomials have large height (∼9k characters), e.g.:
x168 − 10014013832542203812872613924739x161 + 171047690745503707515328576627906817785436888130925209472262244x154

− 1268317331496745879603035032448157273146519836562713924560050631153969519297207668270922371313x147

+ 2323770356353941075543655657513420659336643046142370819377428732724521340302408710897969475691231355959869683497264479798344x140

−155255665877849005391456610648912546278248459988650035630349096570067934429107297756178417453416365696848698754650391795236410173955 · · ·

• Every computation must be done extremely selectively!
• We are presented with same 168 degree field L in 9 different ways.
The abstract isomorphism problem feels hopeless.

• We solve the isomorphism problem by refining the (matched) complex
embeddings and then reconstructing the isomorphism by inverting a
(numerically stable) Vandermonde matrix.
The isomorphisms have even larger height. (100k characters)
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possible, one can reconstruct each coefficient independently.
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Intersecting the quadric with the K3 surface

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

Goal
Show that Q ∩ X decomposes into two quartic curves.

• It suffices to show that the singular locus S of Q ∩ X consists of 10 distinct
reduced points.

• Hopeless to do this directly! Operations in L are seriously expensive!
• Working over Fp we find 10 distinct points.
Hence, S is zero-dimensional and reduced, and deg S ≤ 10.

• We conclude deg S = 10 via Gotzmann regularity theorem, by checking that
dim L[x, y, z,w]•/I• = 10 for • = 6, 7, where V(I) = S.
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Certifying Pic Xal = Λ

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

ΛQ := 〈[C] : C ⊂ σ(Q) ∩ X, σ : L ↪→ C〉 ⊆ Pic(Xal)|B ⊆ Λ
?
⊆ Pic Xal

The inclusion ΛQ ⊆ Λ is not explicit!

Nonetheless, Pic Xal and Λ are saturated in H2(X,Z).

Hence, it is sufficient to show that rk ΛQ = rkΛ = 19.

We can do this in two ways:

• Compute the intersections of these 336 curves with each other over Fp.
• Certify that these correspond to the original classes.
Showing that there are at most 66528 distinct quadrics. Can be done over C.
This establishes a bijection between these quadrics and the 168 pairs of
quartic curve classes that they correspond to.

Pic Xal = Λ X
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Computing the Galois action

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

Q ∩ X decomposes into a pair of quartics over K a quadratic extension of L.

Goal
Compute K and Gal(K/Q) acting on ΛQ.

Via the identification with the original classes we have 1
2πi

(∫
C ω

)
ω∈F1 ∈ K

21.

These can be reconstructed in the same fashion as we reconstructed ai.

Unclear how to certify this step! What are the denominators of 1
2πi

∫
C ω?

Can one compute K using geometry without Gröbner basis?

To try: For a generic hyperplane Q ∩ X ∩ H is a degree 8 reduced scheme.
The number field K is the quadratic extension where we observe two orbits.
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Computing the Galois action

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

Q ∩ X decomposes into a pair of quartics over K a quadratic extension of L.

Goal
Compute K and Gal(K/Q) acting on ΛQ.

The direct computation of Gal(K/Q) looks hopeless.

We guess that K = F( 14
√
u) for a unit u of where F is defined by

x24 + x22 − 24x21 − 84x20 − 205x19 − 155x18 − 770x17 − 500x16 + 18916x15 + 36988x14 + 109234x13 + 387901x12 + 373961x11

− 18170x10 + 75132x9 + 10381x8 − 123071x7 + 108274x6 − 41580x5 + 39936x4 − 21911x3 + 4032x2 + 1428x + 616

and Gal(F/Q) = C3 × PGL(2, 7). #Gal(F/Q) is 14 times smaller than #AutPic Xal.

Can we compute Gal(K/Q) by hand? Gal(K/Q)
?
= Aut Λ? H1(Gal(kal/k),Pic Xal) =?
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Summary

Theorem (C–Sertöz)
The quartic surface X : x4 + xyzw + y3z + yw3 + z3w = 0 ⊂ P3 has Pic Xal = Λ,
generated by quartics over a quadratic extension of L := Q({ai}i).

We are hoping to streamline this method and also figure out its
applications/limitations.

Hopefully, also be able handle families, e.g.,

X : x4 + λxyzw + y3z + yw3 + z3w = 0 ⊂ P3(Q(λ))

Do you have a challenge K3 surface for us?
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