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Endomorphism ring of an abelian variety

Let A be an abelian variety defined over k.

Goal
From the equations of A determine a basis for End A and their equations in A x A.

- Over a finite field, Honda-Tate theory tells us
det(1 — t Frob|H'(A, Q) € Z][t]

determines the k-isogeny class and the isomorphism class of End(A) ® Q.
- There are several in principle algorithms to do this over a number field.
These involve, a day/night algorithm:

- by day: search for reasonable morphisms;
- by night: restrict your search space.
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Let C be a nice (smooth, projective, geometrically integral) curve over k of genus
g given by equations. Let J be the Jacobian of C.

Goal
Given the equations of C, compute the endomorphism ring End 2",

But why?

- It is an interesting challenge [citation needed].
- If EndJ contains non-trivial idempotents, we can hope to decompose J into

abelian varieties of smaller dimension.
- If EndJ is non-trivial, then this allows us to find a modular form that

describes the arithmetic properties of / and C.
- An algorithm to decide transcendence of 1-periods using Huber-Wustholz

theory (Ouaknine-Worrell-Sert6z)



An analytic description of the Jacobian

Via a chosen embedding of k into C, we can consider C as a Riemann surface, and
j(C = HO(Ca QC)V/H'I(Ca Z) = (Cg//\a

where we pick an k basis for H(C,Q¢) = kw1 @ ... & kwg, hence,

/\:{([yw1,...,/7wg> eI : vqu(C,Z)}%Zzg.

In other words, J is a complex torus (plus a polarization).

- We can calculate A numerically.
- Using A, we can hope to understand J analytically...



An analytic description of the Jacobian

Via a chosen embedding of k into C, we can consider C as a Riemann surface, and
j(C = HO(Ca QC)V/H'I(Ca Z) = (Cg//\a

where we pick an k basis for H(C,Q¢) = kw1 @ ... & kwg, hence,

/\:{([yw1,...,/7wg> eI : vqu(C,Z)}%Zzg.

In other words, J is a complex torus (plus a polarization).

- We can calculate A numerically.
- Using A, we can hope to understand J analytically...
- and perhaps even to be able to transfer these results to the algebraic setting.



Heuristic solution

By picking a k-basis for H(C, Qc¢), we have

End(J) = {T € Mg(R) | TA C A}

Hence, if Mis a period matrix for C, i.e, A = NZ%9, then we are reduced to finding
a Z-basis of the solutions (T,R) to
TN=NR,  Te&Mg(k), R My(Z).

Heuristically, via lattice reduction algorithms, we can find such a Z-basis.

There is no obvious way to prove that our guesses are actually correct...
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ac :Ci]iﬂ—ﬂSymg( 0)
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This traces out a divisor on C x C, which determines a.



Representing endomorphisms

oc :Ci]iﬂ—ﬂSymg( 0)
Pi—{Q1,...,Qq} <= a([P — Po]) = [ZQ,—Po]

This traces out a ,which determines a.
Given a € Mg(k?") this divisor is a certificate of containment | g for o € End /2.

Theorem (C-Mascot-Sijsling-Voight)

We give an algorithm for

| true ifacEnd/ and a certificate | gl

Mg(R*") 3 a '
false ifa¢ End)?

By interpolation via ac or by locally solving a differential equation on C x C.



Rigorous Endomorphism ring

Theorem (C-Mascot-Sijsling-Voight, C-Lombardo-Voight, C-Sert6z)
We give an algorithm that computes End J2' with a certificate @
This is a day/night algorithm:

- By day, we compute A ¢ C9 numerically and then certify B C End /2.
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Rigorous Endomorphism ring

Theorem (C-Mascot-Sijsling-Voight, C-Lombardo-Voight, C-Sert6z)
We give an algorithm that computes End J2' with a certificate @.
This is a day/night algorithm:
- By day, we compute A ¢ C9 numerically and then certify B C End /2.
- By night, we search for evidence that End J3' C B.

{Lp,(t) := det(1 — tFroby|H"), Lp,(t), ..., Lp(t)} +—> upper bounds on End/
- The Lp(t) polynomials are as random as EndJ? allows it.

- Two polynomials Ly(t) and Lg(t) suffice to obtain a sharp upperbound.
- For (p,q) in a set of positive density, but unknown apriori.



Rigorous Endomorphism ring

Theorem (C-Mascot-Sijsling-Voight, C-Lombardo-Voight, C-Sert6z)
We give an algorithm that computes End J2' with a certificate @
This is a day/night algorithm:
- By day, we compute A ¢ C9 numerically and then certify B C End /2.
- By night, we search for evidence that End /2 C B.

Frobp modp" (3 Hlys(C,Zp) 1— upper bounds on End J°!

« Frob, modp" is a byproduct of computing L,(t) = det(1 — t Frob,|H},,).
- We check what correspondences C ~ C mod p lift to C ~ C mod p".



- Our method works just as well for isogenies and projections.

- We have verified, decomposed and matched the 66,158 curves over Q of
genus 2 in the L-functions and modular form database (LMFDB).

- The algorithms verify that the plane quartic

C: x* = X3y + 237 + 2X%yz + 2X°2% — 2xy°z + Lxyz?
V43 + P+ =0
has complex multiplication.
- Try it:
https://github.com/edgarcosta/endomorphisms
contains friendly button-push algorithms.


https://github.com/edgarcosta/endomorphisms

Picard lattice of a K3 surface

Let X be a K3 surface defined over k € C. We view X also as a complex manifold.
Pic X' ~ Z(algebraic curves in X) /(linear equivalences) c Hy(X, Z)

Goal
Given X compute PicXx2'.



Picard lattice of a K3 surface

Let X be a K3 surface defined over k € C. We view X also as a complex manifold.
Pic X' ~ Z(algebraic curves in X) /(linear equivalences) c Hy(X, Z)
Goal

Given X compute PicXx2'.

- Over finite field, Tate conjecture tells us that det(1 — t Frob|H?(X, Q)) € Z[t]
gives us the rank of PicX.



Picard lattice of a K3 surface

Let X be a K3 surface defined over k € C. We view X also as a complex manifold.
PicX? ~ Z(algebraic curves in X)/(linear equivalences) c Hy(X, Z)

Goal
From the equations of X, compute Pic X' C H,(X,Z) as a Gal(k?' /k)-module.
- Over finite field, Tate conjecture tells us that det(1 — t Frob|H?(X, Q;)) € Z[t]
gives us the rank of PicX.
- There are several in principle algorithms to compute rk PicX or even PicX

over a number field.
These involve, a day/night algorithm:
- by day: find curve classes in PicX;
- by night: restrict the ambient space for PicX c H%(X, Z).

“The evaluation of p for a given surface presents in general grave difficulties.” — Zariski



An analytic approach

Lefschetz (1,1) theorem
A homology class v € Hy(X,Z) is in Picx?" if and only if f7 wx = 0, where wy is
the nonzero holomorphic 2-form wy on X, unique up to scaling.

Hence, if I is the for wy, i.e., [f7 WX]’YGHz(XZ)' then we are reduced to
finding a lattice A C Hy(X, Z) of solutions

MR =0, R e 7%
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- M can be computed via deformation for projective hypersurfaces (Sertoz).

, via lattice reduction algorithms, we can find A.
- There is no obvious way to that our guesses are actually correct...



An analytic approach

Lefschetz (1,1) theorem

A homology class v € Hy(X,Z) is in Picx?" if and only if f7 wx = 0, where wy is
the nonzero holomorphic 2-form wy on X, unique up to scaling.

Hence, if I is the period vector for wy, i.e., [f7 wX]’YEHz(XZ)' then we are reduced to
finding a lattice A C Hy(X, Z) of solutions

MR =0, R e 7%
- M can be computed via deformation for projective hypersurfaces (Sertoz).
- Heuristically, via lattice reduction algorithms, we can find A.

- There is no obvious way to prove that our guesses are actually correct...
- Nonetheless, a posteriori, one can compute B > 0 such that

Pic(X*) g := Z(y € Pic(X*) | =7,im <B) S A (Lairez-Sert6z).
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X:x*+xyzw+v3z+yw? + 22w =0 c P®

- Itis a fiber in a pencil that has generic rank 19 and matching upper bounds
can be deduced by positive characteristic methods.
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A running example inspired by Klein-Mukai

X:x*+xyzw+v3z+yw? + 22w =0 c P®

- Itis a fiber in a pencil that has generic rank 19 and matching upper bounds
can be deduced by positive characteristic methods.
- No known explicit descriptions of PicX2'.

+ Heuristically, one computes A such that Pic(X*);g C A é Pic X2l

- We can compute Aut A, the isomorphism class seems to be F; x PGL(2,7).
- No small rational curves: There are no lines, no conics, no twisted cubics.
- The “smallest” non-trivial curves that appear are smooth rational quartics.
- Lattice computations with A predict that there are

133056

smooth rational quartics spanning A.



Reconstructing isolated curves from their Hodge classes

Turns out one can compute a bit more for hypersurfaces
@ Ha(X, Z) x H3r(X/R) = C  (y,w)1—> /w
Y

Note, if v € PicX?, then 51 [ w € R*' for w € F'H3(X/R).

27rl
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Reconstructing isolated curves from their Hodge classes

Turns out one can compute a bit more for hypersurfaces
@ Ha(X, Z) x H3r(X/R) = C  (y,w)1—> /w
Y
Note, if y € PicX?, then 5= J,w € ke forw e FTHg (X /k).

Theorem (Movasati-Sertoz)

If v =[Y] € H2(X,Z) for a curve Y C X then from —(f w),ep ONe can construct
an ideal I, such that I(Y) € I,.

In favorable circumstances we expect low order equations in I to span I(Y).
Theorem (Cifani-Pirola-Schlesinger)

For a smooth rational quartic Y € X we have that the equation of the quadric
containing Y generates Iy 2, i.e., I(Y)2 = Iy} 2.



Reconstructing quadric equations

X:x*+xyzw+v3z+yw? + 22w =0 c P®

?
Pic(X*")js € A C PicX®!

Goal
Reconstruct the quadrics containing some of the 133056 smooth rational
quartics in X using the curve classes.
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Reconstructing quadric equations

X:x*+xyzw+v3z+yw? + 22w =0 c P®

?
Pic(X*")js € A C PicX®!

Goal
Reconstruct the quadrics containing some of the 133056 smooth rational
quartics in X using the curve classes.

- Fortunately, there is a small Aut(A) orbit of size 336.
- Hence, we expect an orbit of 168 quadrics each containing a pair of quartics.
- We aim reconstruct the ten (algebraic!) coefficients of these quadrics.
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- Considering all the embeddings and by clearing denominators when
possible, one can reconstruct each coefficient independently.
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- Every computation must be done very selectively.



Reconstructing quadric equations

Goal
Reconstruct the ten coefficients of these quadrics in a Galois orbit of size 168.

- Considering all the embeddings and by clearing denominators when
possible, one can reconstruct each coefficient independently.
- The minimal polynomials of these elements have incredibly large height.

161 154

x"88 _ 10014013832542203812872613924739x®" + 171047690745503707515328576627906817785436888130925209472262244X

— 1268317331496745879603035032448157273146519836562713924560050631153969519297207668270922371313x ™ + - - -

- Every computation must be done very selectively.

- We solve the isomorphism problem between the different presentations by
refining the complex embeddings and inverting a Vandermonde matrix.
The abstract isomorphism problem feels hopeless otherwise.



Intersecting the quadric with X

Q:apx®> +axy+---+aw?=0cCP, [L:=Q({a};): Q=168

Goal
Show that Q N X decomposes into two quartic curves.

- It suffices to show that the singular locus S of Q N X consists of 10 distinct
reduced points.
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Intersecting the quadric with X

Q:apx®> +axy+---+aw?=0cCP, [L:=Q({a};): Q=168

Goal
Show that Q N X decomposes into two quartic curves.

- It suffices to show that the singular locus S of Q N X consists of 10 distinct
reduced points.

- Hopeless to do this directly!

- Working over Fp, we find 10 distinct points.
Hence, S is zero-dimensional and reduced, and deg S < 10.

- We conclude deg S = 10 via Gotzmann regularity theorem, by checking that
dimL[x,y,z,w]e/le =10 for ¢ = 6,7, where V(I) = S.
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Certifying PicX?' = A

Ao :={[C]: CCa(Q)NX, o:L<C)CPic(X")g C A & Picx®
The inclusion Ag C A is not explicit.
Nonetheless, Pic X2 and A are saturated in Hy(X, Z).
Hence, it is sufficient to show that rk Aqg = rk A = 19.
We can do this in two ways:

- Compute the intersections of these 336 curves with each other over .

- Certify that these correspond to the original classes.
Showing that there are at most 66528 distinct quadrics. Can be done over C.
This establishes a bijection between these quadrics and the 168 pairs of
quartic curve classes that they correspond to.
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Compute K and Gal(K/Q) acting on Ag.
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Computing the Galois action

Q:ap’ +axy+---+aw?=0cP, [L:=Q({a};): Q=168
QN X decomposes into a pair of quartics over K a quadratic extension of L.

Goal
Compute K and Gal(K/Q) acting on Ag.
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Via the identification with the original classes we have 5 (f-w) _p € K.
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Computing the Galois action

Q:ap’ +axy+---+aw?=0cP, [L:=Q({a};): Q=168
QN X decomposes into a pair of quartics over K a quadratic extension of L.

Goal

Compute K and Gal(K/Q) acting on Ag.
K21,

Via the identification with the original classes we have 55 (fcw) q €

These can be reconstructed in the same fashion as we reconstructed a;.
Unclear how to certify such heuristic guesses!

Even if given the order O C K over which the quartics are defined over, no

obvious control over denominators of 5= [ w.

Can one compute K using geometry without Grobner basis?
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Q:ap’ +axy+---+aw?=0cP, [L:=Q({a};): Q=168
QN X decomposes into a pair of quartics over K a quadratic extension of L.

Goal
Compute K and Gal(K/Q) acting on Ag.
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Computing the Galois action

Q:ap’ +axy+---+aw?=0cP, [L:=Q({a};): Q=168
QN X decomposes into a pair of quartics over K a quadratic extension of L.

Goal
Compute K and Gal(K/Q) acting on Ag.

The direct computation of Gal(K/Q) looks hopeless.
We guess that K = F( /u) for a unit u of where F is defined by

X2+ x% — 26x® — 84x® — 205x" — 155x™ — 770x" — 500x'® + 18916x™ + 36988x"* + 109234x" + 387901x'? + 3739671X"

—18170x"0 + 75132x° + 10381 — 123071%” + 108274x° — 41580x° + 39936x" — 21911%° + 4032¢% + 1428 + 616

and Gal(F/Q) = C3 x PGL(2,7) (with size 14 times smaller than Aut Pic X?').
Do we have Gal(K/Q) L AutA? Can we compute Gal(K/Q) by hand?



Theorem (C-Sertoz)
The quartic surface X : x* + xyzw + y3z + yw? + 22w = 0 C P2 has PicX?' = A,
generated by quartics over a quadratic extension of L := Q({a;},).

We are hoping to streamline this method and also figure out its applications.

Hopefully, also be able handle families, e.g.,

X x* 4 txyzw + 3z + yw? + 22w = 0 € P*(Q(t))

Do you have a challenge K3 surface for us?



