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Endomorphism ring of an abelian variety

Let A be an abelian variety defined over k.

Goal
Given A compute the endomorphism ring EndA.

• Over a finite field, Honda–Tate theory tells us

det(1− t Frob|H1(A,Q`)) ∈ 1+ tZ[t]

determines the k-isogeny class and the isomorphism class of End(A)⊗Q.
If A = Jac(C), then we can compute this via LPolynomial.

• There are several in principle algorithms to do this over a number field.
These involve, a day/night algorithm:

• by day: search for reasonable morphisms;
• by night: restrict your search space.
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Let A be an abelian variety defined over k.

Goal
From the equations of A determine a basis for EndA and their equations in A×A.

• Over a finite field, Honda–Tate theory tells us
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Our setup

Let C be a nice (smooth, projective, geometrically integral) curve over k of genus
g given by equations. Let J be the Jacobian of C.

Goal
Given the equations of C, compute the endomorphism ring End Jal.

But why?

• It is an interesting challenge [citation needed].
• If End J contains non-trivial idempotents, we can hope to decompose J into
abelian varieties of smaller dimension.

• If End J is non-trivial, then this allows us to find a modular form that
describes the arithmetic properties of J and C.
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An analytic description of the Jacobian

Via a chosen embedding of k into C and a projection into P2, we can consider C
as a Riemann surface, and

JC = H0(C,ΩC)∨/H1(C,Z) = Cg/Λ,

where we pick an k basis for H0(C,ΩC) = kω1 ⊕ . . .⊕ kωg, hence,

Λ =

{(∫
γ
ω1, . . . ,

∫
γ
ωg

)
∈ Cg : γ ∈ H1(C,Z)

}
∼= Z2g.

In other words, J is a complex torus (plus a polarization).

• We can calculate Λ numerically by taking a plane model
BigPeriodMatrix(RiemannsSurface(f, σ)).

Picking a projection that works is sometimes a challenge.
• Using Λ, we can hope to understand J analytically…
• and perhaps even to be able to transfer these results to the algebraic setting.
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Heuristic solution

By picking a k-basis for H0(C,ΩC), we have

End(J) = {T ∈ Mg(k) | TΛ ⊂ Λ}

Hence, if Π is a period matrix for C, i.e., Λ = ΠZ2g, then we are reduced to finding
a Z-basis of the solutions (T,R) to

TΠ = ΠR, T ∈ Mg(kal), R ∈ M2g(Z).

Heuristically, via lattice reduction algorithms, we can find such a Z-basis.

The Galois module structure of End(J) is given via T ∈ Mg(kal).

There is no obvious way to prove that our guesses are actually correct.

The reconstruction of T ∈ Mg(kal) can be quite finicky, this lead to a whole library
to work with k ⊂ C with fixed embedding.



Representing endomorphisms

αC :C AJ−→ J α−→ J 99K Symg(C)

P 7 −→ {Q1, . . . ,Qg} ⇐⇒ α([P− P0]) =
[ g∑
i=1

Qi − P0

]
This traces out a divisor on C × C, which determines α.

Given α ∈ Mg(kal) this divisor is a certificate of containment α for α ∈ End Jal.

Theorem (C–Mascot–Sijsling–Voight)
We give an algorithm for

Mg(kal) 3 α 7→

true if α ∈ End Jal, and a certificate α

false if α /∈ End Jal

By interpolation via αC or by locally solving a differential equation on C × C.
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Rigorous Endomorphism ring

Theorem (C–Mascot–Sijsling–Voight, C–Lombardo–Voight, C–Sertöz)

We give an algorithm that computes End Jal with a certificate X .
This is a day/night algorithm:
• By day, we compute Λ ⊂ Cg numerically and then certify B ⊆ End Jal.

• By night, we search for evidence that End Jal ⊆ B.
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Theorem (C–Mascot–Sijsling–Voight, C–Lombardo–Voight, C–Sertöz)

We give an algorithm that computes End Jal with a certificate X .
This is a day/night algorithm:
• By day, we compute Λ ⊂ Cg numerically and then certify B ⊆ End Jal.
• By night, we search for evidence that End Jal ⊆ B.

{Lp1(t) := det(1− t Frobp|H1), Lp2(t), . . . , Lpi(t)} 7 −→ upper bounds on End Jal

• The Lp(t) polynomials are as random as End Jal allows it.
• Two polynomials Lp(t) and Lq(t) suffice to obtain a sharp upperbound.
• For (p,q) in a set of positive density, but unknown apriori.



Rigorous Endomorphism ring

Theorem (C–Mascot–Sijsling–Voight, C–Lombardo–Voight, C–Sertöz)

We give an algorithm that computes End Jal with a certificate X .
This is a day/night algorithm:
• By day, we compute Λ ⊂ Cg numerically and then certify B ⊆ End Jal.
• By night, we search for evidence that End Jal ⊆ B.

Frobp modpN << H1crys(C,Zp) 7 −→ upper bounds on End Jal

• Frobp modpN is a byproduct of computing Lp(t) = det(1− t Frobp|H1MW).
• We check what correspondences C  C mod p lift to C  C mod pN.



Examples

• Our method works just as well for isogenies and projections.
• We have verified, decomposed and matched the 66, 158 curves over Q of
genus 2 in the L-functions and modular form database (LMFDB).

• The algorithms verify that the plane quartic

C : x4 − x3y + 2x3z + 2x2yz + 2x2z2 − 2xy2z + 4xyz2

− y3z + 3y2z2 + 2yz3 + z4 = 0

has complex multiplication.
• Try it:

https://github.com/edgarcosta/endomorphisms

contains friendly button-push algorithms.

https://github.com/edgarcosta/endomorphisms


“Dans la seconde partie de mon rapport, il s’agit des variétés kählériennes
dites K3, ainsi nommées en l’honneur de Kummer, Kähler, Kodaira et de la belle
montagne K2 au Cachemire.” —André Weil (Photo credit: Waqas Anees)



What is a K3 surface?

There are several equivalent ways to define K3 surfaces.

Definition
An algebraic K3 surface is a smooth projective simply-connected surface with
trivial canonical class.

They may arise in many ways:

• smooth quartic surface in P3

X : f (x, y, z,w) = 0, deg f = 4

• double cover of P2 branched over a sextic curve P(3, 1, 1, 1)

X : w2 = f (x, y, z), deg f = 6

• Kummer surfaces, Kummer(A) := Ã/±, with A an abelian surface.
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Picard lattice of a K3 surface

Let X be a K3 surface defined over k ⊂ C. We view X also as a complex manifold.

NS Xal ' Pic Xal ' Z〈algebraic curves in X〉/〈linear equivalences〉 ⊂ H2(X,Z)

Plays a similar role as End(A) for an abelian variety A

NS(A)⊗Q ' {φ ∈ End(A)⊗Q : φ† = φ},

where † denotes the Rosati involution.

Over Qal, we have

Pic Xal ' H1,1(X) ∩ H2(X,Z) ( H2(X,Z) ' (−E8)2 ⊕ U3 ' Z22

Thus, 1 ≤ rk Pic Xal ≤ 20 = dimH1,1(X). A generic K3 surface has rk Pic Xal = 1

“New and interesting” Galois representations arise from T(X).

H2(X,Q) ' Pic(Xal)Q ⊕ T(X)Q
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Picard lattice of a K3 surface

Let X be a K3 surface defined over k ⊂ C. We view X also as a complex manifold.

Pic Xal ' Z〈algebraic curves in X〉/〈linear equivalences〉 ⊂ H2(X,Z)

Goal
From the equations of X, compute Pic Xal ⊂ H2(X,Z) as a Gal(kal/k)-module.

“The evaluation of ρ for a given surface presents in general grave difficulties.” — Zariski

Over a finite field, Tate conjecture (proven) gives us rk Pic X from

det(1− t Frob|H2(X,Q`)) ∈ Z[t]

and Artin–Tate conjecture (proven) also gives disc Pic Xal modulo squares.
Acessible via WeilPolynomialOfDegree2K3Surface(w2 = f (x, y, z))

Over a number field there are several in principle algorithms to compute rk Pic X
or even Pic X. These involve, a day/night algorithm:

• by day: find curve classes in Pic X;
• by night: restrict the ambient space for Pic X ⊂ H2(X,Z).
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An analytic approach

Lefschetz (1,1) theorem
A homology class γ ∈ H2(X,Z) is in Pic Xal if and only if

∫
γ ωX = 0, where ωX is

the nonzero holomorphic 2-form ωX on X, unique up to scaling.

Hence, if Π = [
∫
γ ωX]γ∈H2(X,Z) ∈ C22 is the period vector for ωX , then we are

reduced to finding a lattice Λ ⊂ H2(X,Z) of solutions

ΠR = 0, R ∈ H2(X,Z) ' Z22.
• Π can be computed:

• rigorously as a ball via deformation for projective hypersurfaces (Sertöz)
• heuristically for degree 2 surfaces branched over 6 lines (Elsenhans–Jahnel)

• Heuristically, via lattice reduction algorithms, we can find Λ ⊂ H2(X,Z).
• There is no obvious way to prove that our guesses are actually correct.
• Nonetheless, given Π as a ball, one can compute B� 0 such that such that

Pic(Xal)|B := Z〈γ ∈ Pic Xal | −γ2prim < B〉 ⊆ Λ (Lairez–Sertöz).
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A running example inspired by Klein–Mukai

X : x4 + xyzw + y3z + yw3 + z3w = 0 ⊂ P3

• It is a fiber in a pencil that has generic rank 19, thus rk Pic Xal ≥ 19.

• Matching upper bounds can be deduced by positive characteristic methods.
• No known explicit descriptions of Pic Xal.
• Heuristically, one computes Λ ' Z19 such that

ΠΛ ≈ 0 Pic(Xal)|B ⊆ Λ
?
⊆ Pic Xal.

• We can compute Aut Λ, the isomorphism class seems to be F7 × PGL(2, 7).
• No small rational curves: There are no lines, no conics, no twisted cubics.
• The “smallest” non-trivial curves that appear are smooth rational quartics.
• Lattice computations with Λ predict that there are

133056
smooth rational quartics spanning Λ.
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Reconstructing isolated curves from their Hodge classes

Turns out one can compute a bit more for hypersurfaces

ϕ:H2(X,Z)× H2dR(X/k) → C (γ, ω) 7 −→
∫
γ
ω

Note, if γ ∈ Pic Xal, then 1
2πi

∫
γ ω ∈ kal for ω ∈ F1H2dR(X/k).

Theorem (Movasati–Sertöz)
If γ = [C] ∈ H2(X,Z) for a curve C ⊂ X then from 1

2πi(
∫
γ ω)ω∈F1 one can construct

an ideal Iγ such that I(C) ( Iγ .
In favorable circumstances we expect low order equations in Iγ to span I(C).
For example, smooth rational curves of degree up to 4 in K3s.

Theorem (Cifani–Pirola–Schlesinger)
For a smooth rational quartic curve C ⊂ X we have that the equation of the
quadric surface containing C generates I[C],2, i.e., I(C)2 = I[C],2.
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Reconstructing quadric surfaces

X : x4 + xyzw + y3z + yw3 + z3w = 0 ⊂ P3

Pic(Xal)|B ⊆ Λ
?
⊆ Pic Xal

Goal
Reconstruct the quadric surfaces containing some of the 133056 smooth
rational quartics in X using the curve classes.

• Fortunately, there is a small Aut(Λ) orbit of size 336 (Elkies).
• For each quartic curve C ⊂ X, we can compute

I[C],2 = 〈a0x2 + · · ·σ(a9)w2〉C

that defines a quadric surface Q, such that Q ∩ X = C ∪ C.
Hence, we expect an orbit of 168 quadrics each containing a pair of quartics.

• We aim reconstruct the ten (algebraic!) coefficients of these quadrics.
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Reconstructing quadric surfaces

Goal
Reconstruct the ten coefficients ai of these quadrics in a Galois orbit of size 168.

• The minimal polynomials have large height about 9k characters, e.g.:
x168 − 10014013832542203812872613924739x161

+ 171047690745503707515328576627906817785436888130925209472262244x154

−1268317331496745879603035032448157273146519836562713924560050631153969519297207668270922371313x147

+23237703563539410755436556575134206593366430461423708193774287327245213403024087108979694756912313 · · ·

• Every computation must be done extremely selectively!
• We are presented with same 168 degree field L in 9 different ways.
The abstract isomorphism problem feels hopeless. 😨
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∏
σ(x − σ(ai)) ∈ Q[x] independently.
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Isomorphism problem

Goal
Construct Q(ak) ↪→ L, where L = Q(a0, . . . ,a9) = Q(a0).
One approach is to compute the roots of the minimal polynomial of ai in L.
In many situations, particularly if deg L� degQ(ak), it is wiser to factor the
defining polynomial of L over Q(ak). This is what PARI/GP does.

In our case, we have all the compatible embeddings
σi : Q(ak) ↪→ L ↪→ C

Thus the isomorphisms is given is the solution of the following linear system
{σi(ak)j}i,j · v = {σi(a0)}i, v ∈ Q168

This is numerically stable, as {σi(ak)j}i,j is a Vandermonde matrix.
The denominators of v are bounded.
In practice, it is faster to iteratively refine the complex embeddings, as their
height is smaller than theoretically possible: 4k vs 120k digits.
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Intersecting the quadric surfaces with the K3 surface

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

Goal
Show that Q ∩ X decomposes into two quartic curves.

• It suffices to show that the singular locus S of Q ∩ X consists of 10 distinct
reduced points.

• Hopeless to do this directly! Operations in L are seriously expensive!
Linear algebra😰 Gröbner basis😱
One needs to compute S by hand, and clear denominators before that.

• Working over Fp we find 10 distinct points.
Hence, S is zero-dimensional and reduced, and deg S ≤ 10.

• We conclude deg S = 10 via Gotzmann regularity theorem, by checking that
dim L[x, y, z,w]•/I• = 10 for • = 6, 7, where V(I) = S.
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reduced points.

• Hopeless to do this directly! Operations in L are seriously expensive!
Linear algebra😰 Gröbner basis😱
One needs to compute S by hand, and clear denominators before that.

• Working over Fp we find 10 distinct points.
Hence, S is zero-dimensional and reduced, and deg S ≤ 10.
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dim L[x, y, z,w]•/I• = 10 for • = 6, 7, where V(I) = S.



Intersecting the quadric surfaces with the K3 surface

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

Goal
Show that Q ∩ X decomposes into two quartic curves.

• It suffices to show that the singular locus S of Q ∩ X consists of 10 distinct
reduced points.

• Hopeless to do this directly! Operations in L are seriously expensive!
Linear algebra😰 Gröbner basis😱
One needs to compute S by hand, and clear denominators before that.

• Working over Fp we find 10 distinct points.
Hence, S is zero-dimensional and reduced, and deg S ≤ 10.

• We conclude deg S = 10 via Gotzmann regularity theorem, by checking that
dim L[x, y, z,w]•/I• = 10 for • = 6, 7, where V(I) = S.



Intersecting the quadric surfaces with the K3 surface

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

Goal
Show that Q ∩ X decomposes into two quartic curves.

• It suffices to show that the singular locus S of Q ∩ X consists of 10 distinct
reduced points.

• Hopeless to do this directly! Operations in L are seriously expensive!
Linear algebra😰 Gröbner basis😱
One needs to compute S by hand, and clear denominators before that.

• Working over Fp we find 10 distinct points.
Hence, S is zero-dimensional and reduced, and deg S ≤ 10.

• We conclude deg S = 10 via Gotzmann regularity theorem, by checking that
dim L[x, y, z,w]•/I• = 10 for • = 6, 7, where V(I) = S.



Certifying Pic Xal = Λ

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

ΛQ := 〈[C] : C ⊂ σ(Q) ∩ X, σ : L ↪→ C〉 ⊆ Pic(Xal)|B ⊆ Λ
?
⊆ Pic Xal

The inclusion ΛQ ⊆ Λ is not explicit!

Nonetheless, Pic Xal and Λ are saturated in H2(X,Z).

Hence, it is sufficient to show that rk ΛQ = rkΛ = 19.

We can do this in two ways:

• Compute the intersections of these 336 curves with each other over Fp.
• Certify that these correspond to the original classes.
Showing that there are at most 66528 distinct quadrics. Can be done over C.
This establishes a bijection between these quadric surfaces and the 168
pairs of quartic curve classes that they correspond to.

Pic Xal = Λ X
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Computing the Galois action

Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

Q ∩ X decomposes into a pair of quartics over K a quadratic extension of L.

Goal
Compute K and Gal(K/Q) acting on ΛQ.

Via the identification with the original classes we have 1
2πi

(∫
C ω

)
ω∈F1 ∈ K

21.

These can be reconstructed in the same fashion as we reconstructed ai.

Unclear how to certify this step! What are the denominators of 1
2πi

∫
C ω?

Can one compute K using geometry without Gröbner basis?

To try: For a generic hyperplane Q ∩ X ∩ H is a degree 8 reduced scheme.
The number field K is the quadratic extension where we observe two orbits.
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Q : a0x2 + a1xy + · · ·+ a9w2 = 0 ⊂ P3, [L := Q({ai}i) : Q] = 168

Q ∩ X decomposes into a pair of quartics over K a quadratic extension of L.

Goal
Compute K and Gal(K/Q) acting on ΛQ.

The direct computation of Gal(K/Q) looks hopeless.

We guess that K = F( 14
√
u) for a unit u of where F is defined by

x24 + x22 − 24x21 − 84x20 − 205x19 − 155x18 − 770x17 − 500x16 + 18916x15

+ 36988x14 + 109234x13 + 387901x12 + 373961x11 − 18170x10 + 75132x9 + 10381x8

− 123071x7 + 108274x6 − 41580x5 + 39936x4 − 21911x3 + 4032x2 + 1428x + 616

and Gal(F/Q) = C3 × PGL(2, 7). #Gal(F/Q) is 14 times smaller than #AutPic Xal.
Can we compute Gal(K/Q)? Gal(K/Q)

?
= Aut Λ? H1(Gal(kal/k),Pic Xal) =?
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Summary

Theorem (C–Sertöz)
The quartic surface X : x4 + xyzw + y3z + yw3 + z3w = 0 ⊂ P3 has Pic Xal = Λ,
generated by quartics over a quadratic extension of L := Q({ai}i).

We are hoping to streamline this method and also figure out its
applications/limitations.

Hopefully, also be able handle families, e.g.,

X : x4 + λxyzw + y3z + yw3 + z3w = 0 ⊂ P3(Q(λ))

Do you have a challenge K3 surface for us?


