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Endomorphism ring of an abelian variety

Let A be an abelian variety defined over k.

Goal
From the equations of A determine a basis for End A and their equations in A x A.

- Over a finite field, Honda-Tate theory tells us
det(1 — t Frob|H'(A, Q/)) € 1+ tZ[t]

determines the k-isogeny class and the isomorphism class of End(A) ® Q.
If A= Jac(C), then we can compute this via LPolynomial.
- There are several in principle algorithms to do this over a number field.
These involve, a day/night algorithm:
- by day: search for reasonable morphisms;
- by night: restrict your search space.
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Let C be a nice (smooth, projective, geometrically integral) curve over k of genus
g given by equations. Let J be the Jacobian of C.

Goal
Given the equations of C, compute the endomorphism ring End 2",

But why?

- It is an interesting challenge [citation needed].
- If EndJ contains non-trivial idempotents, we can hope to decompose J into
abelian varieties of smaller dimension.

- If EndJ is non-trivial, then this allows us to find a modular form that
describes the arithmetic properties of / and C.



An analytic description of the Jacobian

Via a chosen embedding of k into C and a projection into P2, we can consider C
as a Riemann surface, and
Je = HY(C,Qc)" /Hi(C, Z) = CI/A,

(C,Q
where we pick an k basis for H(C,Q¢) = kwi @ ... @ kwg, hence,

/\:{(/w1,...,/wg> e CI . yqu(C,Z)}gzzg.

In other words, J is a complex torus (plus a polarization).

)

- We can calculate A numerically by taking a plane model
BigPeriodMatrix(RiemannsSurface(f, o)).
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An analytic description of the Jacobian

Via a chosen embedding of k into C and a projection into P2, we can consider C
as a Riemann surface, and

j(C = HO(C? QC)V/H1(Ca Z) = Cg//\a
(.0

where we pick an k basis for H(C,Q¢) = kwi @ ... @ kwg, hence,

/\:{(/w1,...,/wg> e CI . yqu(C,Z)}gzzg.

In other words, J is a complex torus (plus a polarization).

- We can calculate A numerically by taking a plane model
BigPeriodMatrix(RiemannsSurface(f, o)).
Picking a projection that works is sometimes a challenge.

- Using A, we can hope to understand J analytically...

- and perhaps even to be able to transfer these results to the algebraic setting.



Heuristic solution

By picking a k-basis for H(C, Qc¢), we have
End(J) = {T € Mg(R) | TA C A}
Hence, if M is a period matrix for C, i.e., A = MZ?%9, then we are reduced to finding
a Z-basis of the solutions (T,R) to
TA=TNR,  TeMy(R'), REeMy(Z).

Heuristically, via lattice reduction algorithms, we can find such a Z-basis.
The Galois module structure of End(J) is given via T € Mq(k?").
There is no obvious way to prove that our guesses are actually correct.

The reconstruction of T € Mg(k?') can be quite finicky, this lead to a whole library
to work with k ¢ C with fixed embedding.



Representing endomorphisms

ac €25 )25 ) ——5 Sym9(C)
Pi—s {Qi,...,Qq} <= a([P — Po]) = [ZQ,—P()]

This traces out a divisor on C x C, which determines a.
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Representing endomorphisms

ac €25 )25 ) ——5 Sym9(C)

g
Pi—s {Qi,...,Qq} <= a([P — Po]) = [ZQ,-—P()]
i=1
This traces out a ~which determines a.

Given a € Mg(k?') this divisor is a certificate of containment | s for o € End /2!,

Theorem (C-Mascot-Sijsling-Voight)

We give an algorithm for

true ifa € EndJ/? and a certificate | &«

Mg(l?al) EX . “ e =
false ifa¢ End)?

By interpolation via ac or by locally solving a differential equation on C x C.



Rigorous Endomorphism ring

Theorem (C-Mascot-Sijsling-Voight, C-Lombardo-Voight, C-Sert6z)
We give an algorithm that computes End J2' with a certificate @
This is a day/night algorithm:

- By day, we compute A ¢ C9 numerically and then certify B C End /2.
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Rigorous Endomorphism ring

Theorem (C-Mascot-Sijsling-Voight, C-Lombardo-Voight, C-Sert6z)
We give an algorithm that computes End J2' with a certificate @.
This is a day/night algorithm:
- By day, we compute A ¢ C9 numerically and then certify B C End /2.
- By night, we search for evidence that EndJ3' C B.

{Lp,(t) := det(1 — tFroby|H"), Lp,(t), ..., Lp(t)} +—> upper bounds on End/
- The Lp(t) polynomials are as random as EndJ? allows it.

- Two polynomials Ly(t) and Lg(t) suffice to obtain a sharp upperbound.
- For (p,q) in a set of positive density, but unknown apriori.



Rigorous Endomorphism ring

Theorem (C-Mascot-Sijsling-Voight, C-Lombardo-Voight, C-Sert6z)
We give an algorithm that computes End J2' with a certificate @.
This is a day/night algorithm:
- By day, we compute A ¢ C9 numerically and then certify B C End /2.
- By night, we search for evidence that EndJ3' C B.

Frobp modp™ (" Hlys(C,Zp) 1— upper bounds on End J°!

- Frob, modp" is a byproduct of computing L,(t) = det(1 — t Froby |H},).
- We check what correspondences C ~» C mod p lift to C ~» C mod pV.



- Our method works just as well for isogenies and projections.

- We have verified, decomposed and matched the 66,158 curves over Q of
genus 2 in the L-functions and modular form database (LMFDB).

- The algorithms verify that the plane quartic

C:x* = X3y + 237 + 2Cyz + 2X%°2% — 2xy°7 + bxyZ?
— V43 v+ =0
has complex multiplication.
- Try it
https://github.com/edgarcosta/endomorphisms

contains friendly button-push algorithms.


https://github.com/edgarcosta/endomorphisms

“Dans la seconde partie de mon rapport, il s’agit des variétés kahlériennes
dites K3, ainsi nommeées en ['honneur de Kummer, Kahler, Kodaira et de la belle
montagne K2 au Cachemire” —Andre Weil (Photo credit: Wagas Anees)
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What is a K3 surface?

There are several equivalent ways to define K3 surfaces.

Definition

An algebraic K3 surface is a smooth projective simply-connected surface with
trivial canonical class.
They may arise in many ways:

- smooth quartic surface in P3
X:f(x,y,z,w) =0, degf =4

- double cover of IP? branched over a sextic curve P(3,1,1,1)
X:w?=f(x,y,z), degf=6

- Kummer surfaces, Kummer(A) := m with A an abelian surface.
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Picard lattice of a K3 surface

Let X be a K3 surface defined over k € C. We view X also as a complex manifold.

NS X3 ~ Pic X3! ~ Z(algebraic curves in X)/(linear equivalences) C H(X,Z)

Plays a similar role as End(A) for an abelian variety A
NS(A) ® Q = {¢ € End(A) ® Q : ¢ = ¢},
where 1 denotes the Rosati involution.
Over @' we have
PicX? ~ HY(X) N HA(X,Z) C H*(X,Z) ~ (—Eg)* @ UP ~ 7%
Thus, 1 < rk PicX?' <20 = dim H"'(X). A generic K3 surface has rk Pic X' = 1
“New and interesting” Galois representations arise from T(X).

H(X, Q) ~ Pic(X*")g @ T(X)g
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Picard lattice of a K3 surface

PicX? ~ Z(algebraic curves in X)/(linear equivalences) c Hy(X, Z)
Goal
From the equations of X, compute Pic X' C H,(X,Z) as a Gal(k? /k)-module.

Over a finite field, Tate conjecture (proven) gives us rk Pic X from
det(1 — t Frob|H?(X, Q) € Z[t]

and Artin-Tate conjecture (proven) also gives disc Pic X2 modulo squares.
Acessible viaWeilPolynomialOfDegree2K3Surface(w? = f(x,y,2))

Over a number field there are several in principle algorithms to compute rk Pic X
or even PicX. These involve, a day/night algorithm:

- by day: find curve classes in PicX;
+ by night: restrict the ambient space for PicX C H*(X, Z).
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A homology class v € H(X,Z) is in Picx?" if and only if f7 wyx = 0, where wy is
the nonzero holomorphic 2-form wy on X, unique up to scaling.
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An analytic approach

Lefschetz (1,1) theorem
A homology class v € H(X,Z) is in Picx?" if and only if f7 wyx = 0, where wy is
the nonzero holomorphic 2-form wy on X, unique up to scaling.

Hence, if N = [ [, wxlyemxz) € C% is the period vector for wy, then we are
reduced to finding a lattice A C Hy(X,Z) of solutions
MR =0, R € Hy(X,Z) ~ 7.
- 1 can be computed:

- rigorously as a ball via deformation for projective hypersurfaces (Sertoz)
- heuristically for degree 2 surfaces branched over 6 lines (Elsenhans-Jahnel)

- Heuristically, via lattice reduction algorithms, we can find A C Hy(X,Z).
- There is no obvious way to prove that our guesses are actually correct.
- Nonetheless, given I as a ball, one can compute B > 0 such that such that

Pic(X*) g := Z(y € PicX* | —3im <B) S A (Lairez-Sertoz).
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A running example inspired by Klein-Mukai

XX+ xyzw +yz+ywP + 22w =0 c P?
- Itis a fiber in a pencil that has generic rank 19, thus rk Pic X2 > 19.
- Matching upper bounds can be deduced by positive characteristic methods.
- No known explicit descriptions of PicX?'.
- Heuristically, one computes A ~ Z" such that

?
NMA~0  Pic(X*)s CACPicX?.

- We can compute Aut A, the isomorphism class seems to be F; x PGL(2,7).
- No small rational curves: There are no lines, no conics, no twisted cubics.
- The “smallest” non-trivial curves that appear are smooth rational quartics.
- Lattice computations with A predict that there are

133056

smooth rational quartics spanning A.
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Reconstructing isolated curves from their Hodge classes

Turns out one can compute a bit more for hypersurfaces
@ Ha(X, Z) x H3g(X/R) = C  (y,w)1—> /w
v
Note, if v € PicX?, then o1 [ w € R for w € FH3(X/R).

Theorem (Movasati-Sertoz)

If v = [C] € H2(X,Z) for a curve C C X then from %([7 w)eeF ONe can construct
an ideal I, such that I(C) C I,.

In favorable circumstances we expect low order equations in I, to span I(C).

For example, smooth rational curves of degree up to 4 in K3s.

Theorem (Cifani-Pirola-Schlesinger)

For a smooth rational quartic curve C C X we have that the equation of the
quadric surface containing C generates I, i.e.,, I(C)2 = I 2-
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Reconstructing quadric surfaces

X:x*+xyzw + vz +yw? + 22w =0 c P®

?
Pic(X*")js € A C Pic X!

Goal
Reconstruct the quadric surfaces containing some of the 133056 smooth
rational quartics in X using the curve classes.

- Fortunately, there is a small Aut(A) orbit of size 336 (Elkies).
- For each quartic curve C C X, we can compute
I[C]v2 = <(]0X2 P eoe O'(Gg)W2>(C

that defines a quadric surface Q, such that QN X = CUC.
Hence, we expect an orbit of 168 quadrics each containing a pair of quartics.
- We aim reconstruct the ten (algebraic!) coefficients of these quadrics.
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Reconstructing quadric surfaces

Goal
Reconstruct the ten coefficients a; of these quadrics in a Galois orbit of size 168.

- Considering all the embeddings, and clearing denominators when possible
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Reconstructing quadric surfaces

Goal
Reconstruct the ten coefficients a; of these quadrics in a Galois orbit of size 168.

- The minimal polynomials have large height about 9k characters, e.g:

X% — 10014013832542203812872613924739x°’

+ 171047690745503707515328576627906817785436888130925209472262244x >
—1268317331496745879603035032448157273146519836562713924560050631153969519297207668270922371313x "+
+23237703563539410755436556575134206593366430461423708193774287327245213403024087108979694756912313 - - -

- Every computation must be done extremely selectively!

- We are presented with same 168 degree field L in 9 different ways.
The abstract isomorphism problem feels hopeless. @
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Isomorphism problem

Goal

Construct Q(ag) — L, where L = Q(ao, . ..,a9) = Q(ap).

One approach is to compute the roots of the minimal polynomial of a; in L.
In many situations, particularly if deg L > deg Q(ag), it is wiser to factor the
defining polynomial of L over Q(ay). This is what PARI/GP does.

In our case, we have all the compatible embeddings

oi: Q(ag) - L—C
Thus the isomorphisms is given is the solution of the following linear system
{oi(ar)}ij - v ={oi(ao)}l, veQ®

This is numerically stable, as {o;(a)'};, is a Vandermonde matrix.
The denominators of v are bounded.

In practice, it is faster to iteratively refine the complex embeddings, as their
height is smaller than theoretically possible: 4k vs 120k digits.
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Intersecting the quadric surfaces with the K3 surface

Q:apX* +axy +---+agw? =0 CP?, [L:=Q({a;};): Q] =168

Goal
Show that Q N X decomposes into two quartic curves.

- It suffices to show that the singular locus S of Q N X consists of 10 distinct
reduced points.

- Hopeless to do this directly! Operations in L are seriously expensive!
Linear algebra @ Grobner basis @
One needs to compute S by hand, and clear denominators before that.

- Working over IF, we find 10 distinct points.
Hence, S is zero-dimensional and reduced, and deg S < 10.

- We conclude deg S = 10 via Gotzmann regularity theorem, by checking that
dimL[x,y,z,w]e/le =10 for ¢ = 6,7, where V(I) = S.
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Certifying PicX?' = A

?
Ao = ([C]:CCa(QNX, o:L=C)CPic(X")g C A C PicX®

The inclusion Ag € A is not explicit!

Nonetheless, Pic X2 and A are saturated in Hy(X, Z).
Hence, it is sufficient to show that rk Aq = rk A = 19.
We can do this in two ways:

- Compute the intersections of these 336 curves with each other over Fp.

- Certify that these correspond to the original classes.
Showing that there are at most 66528 distinct quadrics. Can be done over C.
This establishes a bijection between these quadric surfaces and the 168
pairs of quartic curve classes that they correspond to.

PicX® = A
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Computing the Galois action

Q:apxX’+axy+---+aw?=0cP, [L:=Q({a}):Q]=168
QN X decomposes into a pair of quartics over K a quadratic extension of L.

Goal
Compute K and Gal(K/Q) acting on Aq.

Via the identification with the original classes we have 5L (few) . € K7

These can be reconstructed in the same fashion as we reconstructed a;.
Unclear how to certify this step! What are the denominators of Zim Jew?

Can one compute K using geometry without Grobner basis?

To try: For a generic hyperplane QN X N H is a degree 8 reduced scheme.
The number field K is the quadratic extension where we observe two orbits.
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Computing the Galois action

Q:apxX’+axy+---+aw?=0cP, [L:=Q({a}):Q]=168
QN X decomposes into a pair of quartics over K a quadratic extension of L.

Goal
Compute K and Gal(K/Q) acting on Aq.

The direct computation of Gal(K/Q) looks hopeless.
We guess that K = F(3/u) for a unit u of where F is defined by

x4 4 x?2 — 24x?" — 84x%° — 205x"° — 155%™ — 770x" — 500x™® + 18916x™
+36988x™ 4 109234x™ + 387901x"? + 373961x™" — 18170x™® + 75132x° + 10381x8
—123071x’ 4 108274x° — 41580x° + 39936x* — 21911x° + 4032x> + 1428X + 616

and Gal(F/Q) = C3 x PGL(2,7). # Gal(F/Q) is 14 times smaller than # Aut Pic X2'.
Can we compute Gal(K/Q)? Gal(K/Q) = AutA? H'(Gal(k' /k), PicX?) =?



Theorem (C-Sertoz)

The quartic surface X : x* + xyzw + y3z 4+ yw? 4 23w = 0 C P? has Pic X3 = A,
generated by quartics over a quadratic extension of L := Q({a;}).

We are hoping to streamline this method and also figure out its
applications/limitations.

Hopefully, also be able handle families, e.g,,
XX+ yzw + y3z + yw? 4+ 2w = 0 € P2(Q(N))

Do you have a challenge K3 surface for us?



