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Riemann zeta function

ζ(s) = 1+ 1
2s +

1
3s +

1
4s +

1
5s +

1
6s +

1
7s · · ·

=
1

1− 2−s ·
1

1− 3−s ·
1

1− 5−s · · ·

• One of the most famous examples of a global zeta function
• Together with the functional equation

ξ(s) := π−s/2Γ(s/2)ζ(s) = ξ(1− s)

encodes a lot of the arithmetic information of Z.
e.g.: Zeros of ζ(s)⇝ precise prime distribution
Visualizing the Riemann zeta function and analytic continuation:
https://www.youtube.com/watch?v=sD0NjbwqlYw

• ζ(s) still keeps secret many of its properties

https://www.youtube.com/watch?v=sD0NjbwqlYw


Hasse–Weil zeta functions

Hasse and Weil generalized an analog of ζ(s) for algebraic varieties

ZX(s) :=
∏
p
ZXp(p−s)

If Xp := X mod p is smooth, then

ZXp(t) := exp

∑
i≥0

#Xp(Fpi)
ti
i

 ∈ Q(t)

Example: X = {•}, a point, then Z{•}(s) = ζ(s)

• What arithmetic properties of X can we read from ZXp(s)?
• ZXp(t) obeys a functional equation and satisfies the Riemann hypothesis!
• What about ZX(s)?



Elliptic curves

E an elliptic curve over Q

ZE(s) :=
∏
p
ZEp(p−s) and ZEp(t) =

Lp(t)
(1− t)(1− pt)

Lp(t) =


1− apt+ pt2, good reduction,ap = p+ 1−#Ep(Fp)
1± t, non-split/split multiplicative reduction;
1 additive reduction;

ZE(s) =
∏
p

Lp(p−s)
(1− p−s)(1− p−s+1) =

ζ(s)ζ(s− 1)
LE(s)

• ap ⇝ arithmetic information about Ep ⇝ E.
• Modularity theorem =⇒ LE satisfies a functional equation
• Birch–Swinnerton-Dyer conjecture predicts ords=1 LE(s) = rk(E).



ζ(s) vs ZX(s)

We always expect ZX(s) to satisfy a functional equation.

• zero-dimensional varieties (number fields) ✓
• elliptic curves over Q ✓
• genus 2 curves ? numerically ✓
• surfaces ?

Major difference
• easy to explicitly write down ζ(s)
• extremely difficult to calculate ZXp(t) for an arbitrary X

Problem
Given an explicit description of X, compute

ZXp(t) := exp

∑
i≥0

#Xp(Fpi)
ti
i

 ∈ Q(t)



The zeta function problem

Let X be a smooth variety over a finite field Fq of characteristic p, consider

ZX(t) := exp

∑
i≥1

#X(Fqi)
ti
i


Problem
Compute ZX from an explicit description of X.

Theoretically this is “trivial”.
The degree of ZX is bounded by the geometry of X, and we can then enumerate
X(Fqi) for enough i to pinpoint ZX.

This approach is only practical for very few classes of varieties, e.g., low genus
curves and p small.



“Real life” applications

• Cryptography/Coding Theory, often interested in #X(Fq)
• Testing isomorphism/isogeny
• Computing End(A) for A an abelian variety.
⇝ A couple of ZAp(t) usually give away the shape of End(A).
We will see this in the first half of the main talk.

• Computing Picard number for surfaces
We will see this in the second half of the main talk.

• Testing the speciality of a cubic fourfold
• Computing L-functions and their special values, e.g.:

• Birch–Swinnerton-Dyer conjecture⇝ rk(A)
• searching for Langlands correspondences

• Arithmetic statistics
• Sato–Tate (Click to see histograms: g1 g2 g3 )
• Lang–Trotter

https://math.mit.edu/~drew/g1SatoTateDistributions.html
https://math.mit.edu/~drew/g2SatoTateDistributions.html
https://math.mit.edu/~drew/g3SatoTateDistributions.html


The zeta function problem

Let X ⊂ Pn be a smooth hypersurface over a finite field Fq of characteristic p,
consider

ZX(t) := exp

∑
i≥1

#X(Fqi)
ti
i

 = Q(t)(−1)n
n−1∏
i=0

1
1− qit

,

Problem
Compute ZX from an explicit description of X.

Some data points:

• Elliptic curve, degree 3 polynomial in P2, degQ = 2
• Smooth plane curve, degree 4 polynomial in P2, degQ = 6
• K3 surface, degree 4 polynomial in P3, degQ = 21
• degree 5 polynomial in P3, degQ = 52
• Calabi-Yau 3fold, degree 5 polynomial in P4, degQ = 204



Attack the problem with algebraic topology

If rewrite

#X(Fqa) = {x ∈ Fqa : f(x) = 0} = {x ∈ X(Fpal) : Froba(x) = x}

then we can use Lefschetz fixed point theorem:

• X be a nice space;
• H∗ be a nice cohomology theory;
• F : X→ X be a nice map.

then #{x ∈ X : F(x) = x} =
∑

i(−1)i tr
(
F∗|Hi(X)

)
.

Taking σ∗ = q-th power Frobenius we get

ZZFq (t) =
∏
i
det(1− tσ|Hi(X))(−1)i+1 = det(1− q−1tσ|Hn(Pn\X))(−1)n

n−1∏
i=0

1
1− qit



Common Approaches

• `-adic: by computing the action of Frobenius on mod-` étale cohomology for
many `.

• We need to have an effective description of the cohomology.
• E.g.: for abelian varieties we have Schoof-Pila’s method
However, only practical if g ≤ 2 or some extra structure is available.

• p-adic:
• Dwork cohomology: based on Dwork’s p-adic analytic proof that ZX(t) ∈ Q(t)
One usually gets Frob by solving a p-adic differential equation

• Monsky–Washnitzer cohomology: de Rham cohmology for smooth affine X.
Achieves a striking balance between practicality and generality.
Originally developed for hyperelliptic curves by Kedlaya.
Now, we can handle nondegenerate hypersurfaces in toric varieties.
We do this by computing a matrix representing the action of σ in Hn,†(Pn\X)
with enough of p-adic precision to deduce

Q(t) = det(1− q−1tFrob |Hn,†(Pn\X)) ∈ 1+ Z[t].



Overall picture

Goal
Compute the matrix representing the action of σ in Hn,†(U) with enough p-adic
precision, where U := Pn\X.

HndR(UQp)

∼
id

55
≃ Hnrig(UFq)

σ

		
≃ H†,n(UFq)

σ





explicit description over C
[Dwork–Griffiths , Batyrev–Cox]

��

�
�
�

de Rham cohomology
with overconvergent power series

��

�
�
�

cohomology relations
+

commutative algebra
=⇒

basis for HndR(UQp) =
{
xβω/f i

}
β

+
reduction algorithm

At the end of the day, we obtain an algorithm that runs in quasi-linear time in p.



“Dans la seconde partie de mon rapport, il s’agit des variétés kählériennes
dites K3, ainsi nommées en l’honneur de Kummer, Kähler, Kodaira et de la belle
montagne K2 au Cachemire.” —André Weil (Photo credit: Waqas Anees)



What is a K3 surface?

There are several equivalent ways to define K3 surfaces.
Definition
An algebraic K3 surface is a smooth projective simply-connected surface with
trivial canonical class.
They may arise in many ways:

• smooth quartic surface in P3

X : f(x, y, z,w) = 0, deg f = 4

e.g. Fermat quartic surface x4 + y4 + z4 + w4 = 0.
• double cover of P2 branched over a sextic curve P(3, 1, 1, 1)

X : w2 = f(x, y, z), deg f = 6

e.g. Fermat like surface w2 = x6 + y6 + z6.
• Kummer surfaces, Kum(A) := Ã/±, with A an abelian surface.



K3 surfaces — the sweet spot for surfacesTM

In the classification of surfaces, they land in the middle.

Neither too simple nor too complicated, next level of difficulty past ruled
surfaces

K3 surfaces share many common features with curves and abelian varieties, and
at the same time provide new challenges!

• Trivial canonical bundle⇒ Calabi–Yau manifold, as for elliptic curves
This provides us some constructions and insights coming from physics

• mirror symmetry
• curve counting heuristics∏

n≥1
(1− qn)−24 = q/∆ =

∑
n≥0

dnqn Yau–Zaslow

where dn should “give” the number of n-nodal rational curves in a K3 surface



K3 surfaces — the sweet spot for surfacesTM

K3 surfaces also share many common features with curves and abelian varieties,
and at the same time provide new challenges!

• Trivial canonical bundle⇒ Calabi–Yau manifold, as for elliptic curves
This provides us some constructions and insights coming from physics

• mirror symmetry
• curve counting heuristics∏

n≥1
(1− qn)−24 = q/∆ =

∑
n≥0

dnqn Yau–Zaslow

where dn should “give” the number of n-nodal rational curves in a K3 surface
• Torelli theorem: a K3 surface is determined by its Hodge structure
• Kuga–Satake construction: relates a K3 surface X to an abelian variety KS(X)
of dimension ≤ 219, such that H2(X,Z) ⊂ H2(KS(X)2,Z) as Hodge structures.

• a weaker analogue of Honda–Tate theory for abelian varieties.
• categorical description of ordinary K3 surfaces over a finite field



Picard lattice

A key geometric invariant for an algebraic K3 surface is its Picard lattice

Pic(X) = NS(X) ≃ Zρ, ρ(X) := rk Pic(X)

Geometrically it describes the algebraic cycles on X under
linear/algebraic/numerical equivalency.

Plays a similar role as End(A) for an abelian variety A

NS(A)Q ≃ {φ ∈ End(A)Q : φ† = φ},

where † denotes the Rosati involution.

Over Qal, we have

Pic(XQal) ≃ H1,1(XC) ∩ H2(XC,Z) ⊊ H2(XC,Z) ≃ (−E8)2 ⊕ U3 ≃ Z22

and ρ(XQal) ∈ {1, 2, . . . , 20}.

For a generic K3 surface we have ρ(XQal) = 1



Picard lattice

Over Qal, we have

Pic(XQal) ≃ H1,1(XC) ∩ H2(XC,Z) ⊂ H2(XC,Z) ≃ (−E8)2 ⊕ U3 ≃ Z22

and ρ(XQal) ∈ {1, 2, . . . , 20}.

For a generic K3 surface we have ρ(XQal) = 1

The degree of “difficulty” is negatively correlated with ρ(X)

H2(XC,Q) ≃ Pic(XQal)Q ⊕ T(X)Q

The “new and interesting” Galois representations arise from T(X).



Picard lattice – over finite fields

ZX(t) := exp

( ∞∑
m=1

#X(Fpm)
m tm

)
=

1
(1− t)χ(t)(1− p2t)

where χ(t) = det(1− tFrob |H2et(XFal
p
,Qℓ)) ∈ Z[t] and degχ = 22.

From χ(t) we may deduce ρ(XFpr ) for any r, via Tate conjecture (known for K3):

Pic(XFp)Qℓ
= ker(Frobp−p · id |H2et(XFal

p
,Qℓ))

It implies that cohomological cycles invariant under Frobenius are algebraic.

Write χ(t) = h(t)
∏
i
Φki(pt)

γi

where Φki(t) ∈ Z[t] is the ki-th cyclotomic polynomial, then

ρ(XFpr ) =
∑
ki|r

degΦki .
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Elliptic curves

E : y2 = x3 + ax+ b, a,b ∈ Z

• What can we say about #E(Fp) for an arbitrary p?
• Given #E(Fp) for many p, what can we say about E?

⇝ studying the statistical properties #E(Fp).



Hasse’s bound

Theorem (Hasse)

ap := p+ 1−#E(Fp) ∈ [−2
√
p, 2
√
p]

Alternatively, we could also have written the formula above as

#E(Fp) =L(1), where
L(T) =1− apT+ pT2 = det(1− TFrobp |H1(E))
ap := tr Frobp ∈ [−2

√
p, 2
√
p]

Question
What can we say about the error term ap/

√p as p→∞?



Two types of elliptic curves

ap := p+ 1−#Ep = tr Frobp ∈ [−2
√
p, 2
√
p]

There are two limiting distributions for ap/
√p

non-CM CM
EndQ EQal = Q EndQ EQal = Q(

√
−d)

-2 -1 1 2 -2 -1 0 1 2

This is know as the Sato–Tate conjecture (a theorem for elliptic curves over Q).



How to distinguish between the two types?

non-CM CM by Q(
√
−d)

-2 -1 1 2 -2 -1 0 1 2

• EndQ EQal ↪→ EndQ EFal
p
←↩ Q(Frobp)

• ap ̸= 0 mod p⇐⇒ EndQ EFal
p
is a quadratic field

• If E has CM, then ap ≡ 0 mod p⇔ p inert or ramified in Q(
√
−d)

⇔ Q(
√
−d) ⊊ EndQ EFal

p
• If E is non-CM, then EndQ EFal

p
∩ EndQ EFal

q
≃ Q with prob. 1



Examples

E : y2 + y = x3 − x2 − 10x− 20 (11.a2)
•EndQ EFal

2
≃ Q(

√
−1)

•EndQ EFal
3
≃ Q(

√
−11)

}
⇒ EndQ EQal = Q

E : y2 + y = x3 − 7 (27.a2)
• p = 2 mod 3⇒ ap = 0⇒ EndQ Ealp is a Quaternion algebra
• p = 1 mod 3⇒ EndQ Ealp ≃ Q(

√
−3)

• ⇝ EndQ Eal = Q(
√
−3)

http://www.lmfdb.org/EllipticCurve/Q/11/a/2
http://www.lmfdb.org/EllipticCurve/Q/27/a/2


Genus 2 curves/Abelian surfaces

There are 6 possibilities for the real endomorphism algebra:

Abelian surface EndR Aal

square of CM elliptic curve M2(C)
• QM abelian surface M2(R)
• square of non-CM elliptic curve
• CM abelian surface C× C
• product of CM elliptic curves
product of CM and non-CM elliptic curves C× R
• RM abelian surface R× R
• product of non-CM elliptic curves
generic abelian surface R

Can we distinguish between these by looking at A mod p?



Endomorphism algebra over finite fields

Over finite fields the Frobenius polynomial

det(1− tFrob |H1(A))

uniquely determines the isogeny class of A and EndQ A up to isomorphism.

For example, endomorphisms corresponds to a nontrivial graphs in A× A, up to
numerical equivalency, i.e.,

End(A) ≃ DC(A× A) ⊂ H1(A)⊗ H1(A).

Thus, Tate conjectures, proved for abelian varieties by Tate, tells us

rk End(A) = dim ker(Frob−p|H1(A)⊗ H1(A)).

Therefore, by factoring det(1− tFrob |H1(A)⊗ H1(A)) we obtain rk End(AFqr ), ∀r≥1.

Tate also showed that Q(Frob) is the center of EndQ A



Endomorphism algebra over finite fields

Theorem (Tate)

rk End(A) = dim ker(Frob−p|H1(A)⊗ H1(A))

Example
A/F5 and det(1− tFrob |H1(A)) = 1− 2T2 + 25T4

• det(1− tFrob |H1(A)⊗ H1(A)) =
(1− 5T)4(1+ 5T)4(1− 2T+ 25T2)2(1+ 2T+ 25T2)2

• rk EndA = 4 and thus EndA = Q(Frob) = Q(
√
−2,
√
3)

• all endomorphisms are defined over F25, and
• AF25 is isogenous to a square of an elliptic curve given by 1− 2T+ 25T2

• EndQ AF25 ≃ M2(Q(
√
−6))



Example continued, now over Q

A = Jac(y2 = x5 − x4 + 4x3 − 8x2 + 5x− 1) (262144.d.524288.1)
For p = 5, det(1− TFrob5 |H1(A)) = 1− 2T2 + 25T4, and:

• all endomorphisms of AFal
5
are defined over F25

• det(1− TFrob25 |H1(A)) = (1− 2T+ 25T2)2
• over F25 is isogenous to a square of an elliptic curve
• EndQ AFal

5
≃ M2(Q(

√
−6))

For p = 7, det(1− TFrob7 |H1(A)) = 1+ 6T2 + 49T4, and:
• all endomorphisms of AFal

7
are defined over F49

• det(1− TFrob27 |H1(A)) = (1+ 6T+ 49T2)2
• F49 is isogenous to a square of an elliptic curve
• EndQ AFal

7
≃ M2(Q(

√
−10))

⇒ EndR Aal ̸= M2(C)

http://www.lmfdb.org/Genus2Curve/Q/262144/d/524288/1


Same Frobenius polynomials, different approach

We could have looked at the Néron–Severi lattice.

NS(AQal) ↪→ NS(AFal
p
)

• rkNS(AQal) ∈ {1, 2, 3, 4}
• rkNS(AFal

p
) ∈ {2, 4, 6}

Example
• rkNS(AFal

5
) = rkNS(AFal

7
) = 4

•
discNS(AFal

5
) = −6 mod Q×2

discNS(AFal
7
) = −10 mod Q×2

}
⇒ rkNS(AQal) ≤ 3

By a theorem of Charles, we know that at some point this method will attain a
tight upper bound for rkNSAQal .



Real endomorphisms algebras and Picard numbers

Abelian surface EndR Aal rkNS(Aal)
square of CM elliptic curve M2(C) 4
• QM abelian surface M2(R) 3
• square of non-CM elliptic curve
• CM abelian surface C× C 2
• product of CM elliptic curves
product of CM and non-CM elliptic curves C× R 2
• RM abelian surface R× R 2
• product of non-CM elliptic curves
generic abelian surface R 1



Higher genus

• K be a numberfield such that EndAK = EndAal
• AK ∼

∏t
i=1 A

ni
i , Ai simple and unique up to isogeny (over K),

• Bi := EndQ Ai central simple algebra over Li := Z(Bi),
• dimLi Bi = e2i ,
• EndQ AK =

∏t
i=1Mni(Bi)

Theorem (C–Mascot–Sijsling–Voight, C–Lombardo–Voight)
If Mumford–Tate conjecture holds for A, then we can compute

• t
• {(eini,ni dimAi)}ti=1
• Li

This is practical and we just need two well chosen Frobenius polynomials.
Without Mumford–Tate conjecture we only obtain upper bounds.



Proof idea in the isotypical setting

• K be a numberfield such that EndAK = EndAal
• AK ∼ Anrad, Arad geometrically simple,
• B := EndQ Arad central simple algebra over L := Z(B),
• dimL B = e2,

Then we claim we can compute en and L.

Zywina showed that for p in a set of density 1 in K we have

AFp ∼ Cen,

with C geometrically simple, and thus we may effectively compute en.

Furthemore, for q in a set of density 1 depending on p, we have

L = Q(Frobp) ∩Q(Frobq)

Zywina has recently refined our method to compute the Sato–Tate group of AK.



Real endomorphisms algebras, {eini,ni dimAi}ti=1, and dim Li

Recall, AK ∼
∏t
i=1 A

ni
i , Li = Z(EndQ Ai), and dimLi EndQ Ai = e2i

Abelian surface EndR Aal tuples dim Li
square of CM elliptic crv M2(C) {(2, 2)} 2
• QM abelian surface M2(R) {(2, 2)} 1
• square of non-CM elliptic crv
• CM abelian surface C× C {(1, 2)} 4
• product of CM elliptic crv {(1, 1), (1, 1)} 2, 2
CM × non-CM elliptic crvs C× R {(1, 1), (1, 1)} 2, 1
• RM abelian surface R× R {(1, 2)} 2
• prod. of non-CM elliptic crv {(1, 1), (1, 1)} 1, 1
generic abelian surface R {(1, 1)} 1



Example continued

A = Jac(y2 = x5 − x4 + 4x3 − 8x2 + 5x− 1) (262144.d.524288.1)
• EndQ AFal

3
≃ M2(Q(

√
−3))

• EndQ AFal
5
≃ M2(Q(

√
−6))

• ⇒ EndR AQal ̸= M2(C)
Question
Write B := EndQ AQal and assume that B is a quaternion algebra.
Can we guess discB?
If ` is ramified in B⇒ ` cannot split in Q(Frobp)

• 5, 13, 17 ∤ discB, as they split in Q(
√
−3)

• 7, 11 ∤ discB, as they split in Q(
√
−6)

We can rule out all the primes except 2 and 3 (up to some bnd).
Indeed, discB = 6.

http://www.lmfdb.org/Genus2Curve/Q/262144/d/524288/1


Picard numbers of surfaces over Qal

Let X := Z(f) ⊂ P3Q be a smooth surface of degree d.

Picard group Pic(XQal) ≃ Zρ and Picard number ρ(XQal) := rk Pic(XQal)

• d = 2: ρ(XQal) = 2 and XQal ≃ P1 × P1

• d = 3: ρ(XQal) = 7 and XQal ≃ Blp1,...,p6 P2

• d = 4: ρ(XQal) ∈ {1, 2, . . . , 20} and X is a K3 surface
• d = 5: ρ(XQal) ∈ {1, 2, . . . , 45}

In general, Pic(XQal) ≃ H1,1(XC) ∩ H2(XC,Z) ⊂ H2(XC,Z) and 1 ≤ ρ(XQal) ≤ h1,1.

Problem
Compute ρ(XQal) from f ∈ Z[x, y, z,w]
In principle, solved, if given the Tate conjecture.
[Charles, Poonen–Testa–van Luijk, Hassett–Kresch–Tschinkel, Shioda, Lairez–Sertöz]



Picard lattice – over finite fields

Tate conjecture

Pic(XFp)Qℓ
= ker(Frobp−p · id |H2et(XFal

p
,Qℓ))

χ(t) := det(1− tFrob |H2et(XFal
p
,Qℓ)) ∈ Z[t].

One may deduce χ by naively computing #X(Fpm) for m ≤ b2/2+ 1.

Since Frobp acts semisimply, we have:

ρ
(
XFpn

)
= #{z : χ(1/z) = 0 and zn = pn}.

Note: ρ(XFal
p
) ≡ b2 mod 2

For p > 7 computing χ(t) by naive point counting is not practical.

Instead, one relies in a infrastructure of methods in crystalline cohomology
[Abbott–Kedlaya–Roe, C, C–Harvey–Kedlaya, Tuitman–Pancratz]



Reduction to finite characteristic

Take f ∈ Z[x, y, z,w] and X := Z(f) ⊂ P3Q.

We may consider the surface XFp := Z(f mod p) ⊂ P3(Fp).

Theorem
If X and XFp are smooth then the specialization map is injective

Pic(XQal) ↪→ Pic(XFal
p
) and ρ(XQal) ≤ ρ(XFal

p
).

Goal
For a given f and p, improve the inequality ρ(XQal) ≤ ρ(XFal

p
).

Parity reasons might already force the inequality to not be sharp.

Endomorphisms of the transcendental lattice can complicate things even further.



Improving upper bounds — using two specializations [van Luijk]

Pic(XQal) ↪→ Pic(XFal
p
) and ρ(XQal) ≤ ρ(XFal

p
)

If p and q are two primes of good reduction, and

ρ(XFal
p
) = ρ(XFal

q
) = 2r,

disc Pic(XFal
p
) ̸= disc Pic(XFal

q
).

then
Pic(XQal) < 2r.

van Luijk, used this technique with r = 1, to provide the first known examples of
K3 surfaces over Q such that ρ(XQal) = 1

Under the right conditions we know that this method will not succeed to give a
tight upper bound (parity + endomorphisms of the transcendental lattice).



Improving upper bounds — torsion-free cokernel [Elsenhans–Jahnel]

Elsenhans–Jahnel showed that the specialization map

Pic(XQal) ↪→ Pic(XFal
p
)

has torsion-free cokernel for p ̸= 2.

Thus, if ρ(XFal
p
) = ρ(XQal) every invertible sheaf lifts.

For example, if ρ(XFal
p
) = 2, Elsenhans–Jahnel approach is

1. compute Pic(XFal
p
)

2. estimate the degree of a hypothetical effective divisor of the lift
3. use Gröbner bases to verify that such a divisor does or does not exist

This approach is only practical if one can compute Pic(XFal
p
) and if the obtained

estimates are low.



Reduction to finite characteristic

Take f ∈ Z[x, y, z,w] and X := Z(f) ⊂ P3Z.

We may consider the surface XFp := Z(f mod p) ⊂ P3(Fp).

Theorem
If X and XFp are smooth then ρ(XQal) = ρ(XQal

p
) ≤ ρ(XFal

p
).

Goal
For a given f and p, improve the inequality above.

Idea, try to lift algebraic cycles (curves) from Fal
p to Qal

p .

We will do this by considering the thickenings

Z(f mod pi) ⊂ P3Z/(p)i i = 1, 2, . . .



1st ingredient: Cohomology

For simplicity, assume that all curve classes are defined over the base field, i.e.,

ρ(X) = ρ(XQal) and ρ(XFp) = ρ(XFal
p
)

Over characteristic zero we have:
• H2dR(X/Q) = F0 ⊃ F1 ⊃ F2, the Hodge filtration
• Pic(X) ↪→ F1(X)
• For d = 4, dimFi(X) = 22, 21, 1.

Over characteristic p we have:

• Pic(XFp) ↪→ H2crys(XFp/Zp)⊗Qp ≃ H2dR(X/Q)⊗Q Qp = F0Qp ⊃ F1Qp ⊃ F2Qp

Theorem (Berthelot, Ogus 1978; Raynaud 1979)

Pic(X)Q = Pic(XFp)Q ∩ F1Qp



2nd ingredient: Approximate Pic(XFp)⊗Z Qp

Via the isomorphism H2crys(XFp/Zp)⊗Qp ≃ H2dR(X/Q), we have

Frobp : H
2
dR(X/Qp)→ H2dR(X/Qp).

Tate conjecture

Pic(XFp)Qp = ker(Frobp−p · id |H2dR(X/Qp))

By computing a p-adic approximation of Frobp, we may compute a p-adic
approximation of

π : Pic(XFp)Qp → H2dR(X/Qp)/F
1
Qp

thus dimQ Pic(X) ≤ dimQp ker π.

By picking a basis that respects the Hodge filtration, the map

H2dR(X/Qp)→ H2dR(X/Qp)/F
1
Qp

is a coordinate projection.



Abelian surface

A = Jac(y2 = 4x5 − 36x4 + 56x3 − 76x2 + 44x− 23)

Frob |H1
dR(A/Qp)

≡


31 · 482 31 · 284 16241 3075
31 · 386 31 · 886 2644 12126
31 · 284 31 · 659 6336 9750
31 · 194 31 · 876 27408 10841

 (mod 313),

L(t) = det(1− tFrob |H1) = 1− 3t+ 14t2 − 93t3 + 961t4.
From this we deduce Frob |H2

dR(A/Qp)
and

det(1− t31−1 Frob |H2dR(A/Qp)) = (t− 1)2(31t4 + 48t3 + 43t2 + 48t+ 31)/31

Thus, ρ
(
AFal

p

)
= 2.

Since the basis of H1 respects the Hodge filtration, the induced basis in H2 will
also respect it.



Abelian Surface

A = Jac(y2 = 4x5 − 36x4 + 56x3 − 76x2 + 44x− 23)

det(1− t31−1 Frob |H2dR(A/Qp)) = (t− 1)2(31t4 + 48t3 + 43t2 + 48t+ 31)/31

Thus, ρ
(
AFal

p

)
= 2.

Compute 2 eigenvectors
v1 ≡ (356, 37, 831, 0, 295, 31) (mod 312)
v2 ≡ (4, 957, 3, 1, 0, 0) (mod 312).

The last coordinate of the vectors above gives the projection to H2/F1.

Therefore, v1 /∈ F1 and the corresponding algebraic cycle cannot lift to Qp.

Thus, we improved rkNS(AQal) ≤ 2 to rkNS(AQal) ≤ 1, and therefore End(AQal) = Z.

van Luijk’s method would have succeed in this example by using a second prime.



Abelian surface

A = Jac(y2 = 4x5 − 36x4 + 56x3 − 76x2 + 44x− 23)

We have automated this process and the SageMath package is available at
github.com/edgarcosta/crystalline_obstruction

sage: f = ZZ['x,y']('4*x^5 - 36*x^4 + 56*x^3 - 76*x^2 + 44*x - 23 -y^2')
sage: crystalline_obstruction(f=f, p=31, precision=3)
(1,
{'precision': 3,
'p': 31,
'rank T(X_Fpbar)': 2,
'factors': [(t - 1, 2)],
'dim Ti': [2],
'dim Li': [1]})

As we had observed before:
• ρ
(
AFal

p

)
= 2

• ρ(AQal) ≤ 1 =⇒ rk End(AQal) = 1.

github.com/edgarcosta/crystalline_obstruction


Abelian threefold A := Jac(y4 + x3z+ 2y3z− yz3)

Recall that End(A) ≃ H1(A)⊗ H1(A) ⊂ H2(A× A).
Thus, we may bound rk End(A) directly by inspecting H1(A)⊗ H1(A).
sage: crystalline_obstruction(f=f, p=31, precision=3)
(4, {'rank T(X_Fpbar)': 5,

'factors': [(t - 1, 3), (t^2 + t + 1, 1)],
'dim Ti': [3, 2],
'dim Li': [2, 2],
'precision': 5, 'p': 31})

sage: crystalline_obstruction(f=f, p=31, precision=3, tensor=True)
(6, {'rank T(X_Fpbar)': 10,

'factors': [(t - 1, 6), (t^2 + t + 1, 2)],
'dim Ti': [6, 4],
'dim Li': [4, 2],
'precision': 5, 'p': 31})

• Improved, rkNS(AQal) ≤ 5 to rkNS(AQal) ≤ 4
• Improved, rk End(AQal) ≤ 10 to rk End(AQal) ≤ 6
• indeed, End(AQal)Q = Q(

√
−3)× B, B is a quaternion algebra with discB = 6.



K3 surface

X := Z(y4 − x3z+ yz3 + zw3 + w4) ⊂ P3C

sage: crystalline_obstruction(f, p=89, precision=3)
(4,
{'rank T(X_Fpbar)': 10,
'factors': [(t - 1, 1), (t + 1, 1), (t - 1, 4), (t^4 + 1, 1)],
'dim Ti': [1, 1, 4, 4],
'dim Li': [1, 0, 3, 0]},
'precision': 3, 'p': 89})

• ρ(XFal
89
) = 10

• Pic(XFal
89
) decomposes as Pζ1 ⊕ Pζ2 ⊕ Pζ8

• By studying each factor independent, we show ρ(XQal) ≤ 4
• In fact, ρ(XQal) = 4 as there are four lines in z = 0.
• previous approaches would have not used p = 89



Quartic surface

X = Z(y4 − x3z+ yz3 + zw3 + w4) ⊂ P3C

sage: crystalline_obstruction(f, p=31, precision=5)
(4,
{'rank T(X_Fpbar)': 4,
'factors': [(t - 1, 1), (t - 1, 1), (t + 1, 2)],
'dim Ti': [1, 1, 2],
'dim Li': [1, 1, 2]},
'precision': 5, 'p': 31})

• ρ(XFal
31
) = 4

• no cycle obstruction found while working Z/(p)5
• ρ(XQal) ≤ 4, with some extra confidence that the equality might hold.
• by searching for lines Elsenhans–Jahnel’s method would have succeeded in
this example



Quintic surface

X := Z(9xy4 + 3x4z+ 9y2z3 + z5 + 5w5) ⊂ P3

sage: crystalline_obstruction(f, p=23, precision=6)
(1, {'rank T(X_Fpbar)': 5,

'factors': [(t - 1, 1), (t - 1, 1), (t + 1, 1), (t^2 + 1, 1)],
'dim Ti': [1, 1, 1, 2],
'dim Li': [1, 0, 0, 0],

'precision': 6, 'p': 23})
sage: crystalline_obstruction(f, p=29, precision=20)
(3, {'rank T(X_Fpbar)': 5,

'factors': [(t - 1, 1), (t - 1, 2), (t + 1, 2)],
'dim Ti': [1, 2, 2],
'dim Li': [1, 1, 1]})
'precision': 20, 'p': 29})

• ρ(XQal) = 1
• However, we cannot deduce this from p = 29, not even with infinite precision.
• The surface has CM by Q(ζ5)



Final thoughts

• Is there a prime for which the bound will be tight?
In general, no.
For example, take a K3 X surface with real multiplication, defined over a
number field where all the algebraic cycles in X and X× X are defined.
However, we are hopeful for K3 surfaces and abelian 3folds defined over Q.

• Can we combine both approaches?
At the moment we are only computing an approximation of Pic(X)Qp .
To combine several primes we need at least Pic(XFp)Q, to be able to use

Pic(X)Q = Pic(XFp)Q ∩ F1Qp

in its full strength.
At the moment we are only using

Pic(X)Qp ⊂ Pic(XFp)Qp ∩ F1Qp


