Counting points on smooth plane quartics

Edgar Costa (MIT) Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation August, 2022 Algorithmic Number Theory Symposium XV (ANTS) Management and Antonia Slides available at edgarcosta.org

Joint work with David Harvey and Andrew Sutherland.

L-function of a smooth projective curve

 X/\mathbb{Q} smooth projective curve of genus g.

$$L(X,s) = \sum_{n \ge 1} \frac{a_n}{n^s} = \prod_p \frac{1}{L_p(p^{-s})},$$

where $L_p(T) \in 1 + T\mathbb{Z}[T]$ and deg $L_p(T) \leq 2g$.

$$Z_p(T) := \exp\left(\sum_{r \ge 1} \# X(\mathbb{F}_{p^r}) \frac{T^r}{r}\right) = \frac{L_p(T)}{(1-T)(1-pT)}$$

in particular

$$a_p = p + 1 - \# X(\mathbb{F}_p)$$

Understanding $a_n \rightarrow Birch-Swinnerton-Dyer, Lang-Trotter, Sato-Tate, ...$

$$L(X,s) = \sum_{n \ge 1} \frac{a_n}{n^s} = \prod_p \frac{1}{L_p(p^{-s})} = \prod_p \frac{1}{1 - a_p p^{-s} + \cdots},$$

To compute a_n for $n \leq N$ we only need to compute a_{p^e} for $p^e \leq N$.

$$L(X,s) = \sum_{n \ge 1} \frac{a_n}{n^s} = \prod_p \frac{1}{L_p(p^{-s})} = \prod_p \frac{1}{1 - a_p p^{-s} + \cdots},$$

To compute a_n for $n \leq N$ we only need to compute a_{p^e} for $p^e \leq N$.

The cost is dominated by computing $a_p := \operatorname{Tr}(\operatorname{Frob}_p | H^1(X)) \in [-2g\sqrt{p}, 2g\sqrt{p}]$

The cost is dominated by computing $a_p := \operatorname{Tr}(\operatorname{Frob}_p | H^1(X)) \in [-2g\sqrt{p}, 2g\sqrt{p}]$ We know how to do this efficiently in $N(\log N)^{O(1)}$ for cyclic covers of \mathbb{P}^1

$$X: y^m = f(x), \qquad f \in \mathbb{Z}[x]$$

• elliptic: Schoof (1985) — using group structure

The cost is dominated by computing $a_p := \operatorname{Tr}(\operatorname{Frob}_p | H^1(X)) \in [-2g\sqrt{p}, 2g\sqrt{p}]$ We know how to do this efficiently in $N(\log N)^{O(1)}$ for cyclic covers of \mathbb{P}^1

$$X: y^m = f(x), \qquad f \in \mathbb{Z}[x]$$

- elliptic: Schoof (1985) using group structure
- hyperelliptic: Harvey (2014), Harvey–Sutherland (2014, 2016)
- geometric hyperelliptic: Harvey–Massierer–Sutherland (2016)
- superelliptic: Sutherland (2020)

Apart from Schoof's, they all work by computing g^2 coefficients of $f(x)^{O(p)}$.

The cost is dominated by computing $a_p := \operatorname{Tr}(\operatorname{Frob}_p | H^1(X)) \in [-2g\sqrt{p}, 2g\sqrt{p}]$ We know how to do this efficiently in $N(\log N)^{O(1)}$ for cyclic covers of \mathbb{P}^1

$$X: y^m = f(x), \qquad f \in \mathbb{Z}[x]$$

- elliptic: Schoof (1985) using group structure
- hyperelliptic: Harvey (2014), Harvey–Sutherland (2014, 2016)
- geometric hyperelliptic: Harvey–Massierer–Sutherland (2016, ml)

Apart from Schoof's, they all work by computing g^2 coefficients of $f(x)^{O(p)}$.

The cost is dominated by computing $a_p := \operatorname{Tr}(\operatorname{Frob}_p | H^1(X)) \in [-2q\sqrt{p}, 2q\sqrt{p}]$ We know how to do this efficiently in $N(\log N)^{O(1)}$ for cyclic covers of \mathbb{P}^1

$$X: y^m = f(x), \qquad f \in \mathbb{Z}[x]$$

- \cdot elliptic: Schoof (1985) using group structure
- hyperelliptic: Harvey (2014), Harvey–Sutherland (2014, 2016)
- geometric hyperelliptic: Harvey–Massierer–Sutherland (2016, M)
- superelliptic: Sutherland (2020, 1)

Apart from Schoof's, they all work by computing q^2 coefficients of $f(x)^{O(p)}$.

Today: smooth plane quartics

Smooth plane quartics

Smooth plane quartics are generic g = 3 curves given as

 $X: f(x_0, x_1, x_2) = 0, \qquad f \in \mathbb{Z}[x_0, x_1, x_2], \quad \deg f = 4$

and computing $a_p := \operatorname{Tr}(\operatorname{Frob}_p | H^1(X))$ for $p \leq N$ in $N(\log N)^{O(1)}$

We will present three algorithms to do this.

We will in fact compute the Cartier–Manin matrix $C_p \in \mathbb{F}_p^{3 \times 3}$.

Suffices for *p* large enough, as $\operatorname{Tr} C_p \equiv a_p \mod p$ and $a_p \in [-6\sqrt{p}, 6\sqrt{p}]$.

Smooth plane quartics

where

Smooth plane quartics are generic g = 3 curves given as

 $X: f(x_0, x_1, x_2) = 0, \qquad f \in \mathbb{Z}[x_0, x_1, x_2], \quad \deg f = 4$

and computing $a_p := \operatorname{Tr}(\operatorname{Frob}_p | H^1(X))$ for $p \leq N$ in $N(\log N)^{O(1)}$

We will present three algorithms to do this.

We will in fact compute the Cartier–Manin matrix $C_p \in \mathbb{F}_p^{3 \times 3}$.

Suffices for *p* large enough, as $\operatorname{Tr} C_p \equiv a_p \mod p$ and $a_p \in [-6\sqrt{p}, 6\sqrt{p}]$.

$$C_{p} \coloneqq \begin{bmatrix} f_{p-1,p-1,2p-2}^{p-1} & f_{2p-1,p-1,p-2}^{p-1} & f_{p-1,2p-1,p-2}^{p-1} \\ f_{p-2,p-1,2p-1}^{p-1} & f_{2p-2,p-1,p-1}^{p-1} & f_{p-2,2p-1,p-1}^{p-1} \\ f_{p-1,p-2,2p-1}^{p-1} & f_{2p-1,p-2,p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} \end{bmatrix},$$

$$f_{i,i,k}^{p-1} \text{ denotes the coefficient of the term } x_{0}^{i} x_{1}^{j} x_{2}^{k} \text{ in } f(x_{0}, x_{1}, x_{2})^{p-1}$$

Visualization of the Cartier–Manin matrix for p = 7

$$\begin{bmatrix} f_{p-1}^{p-1} & f_{2p-1,p-1,p-2}^{p-1} & f_{p-1,2p-1,p-2}^{p-1} \\ f_{p-2,p-1,2p-1}^{p-1} & f_{2p-2,p-1,p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} \\ f_{p-1,p-2,2p-1}^{p-1} & f_{2p-2,p-1,p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} \\ f_{p-1,p-2,2p-1}^{p-1} & f_{2p-1,p-2,p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} \\ f_{p-1,p-2,2p-1}^{p-1} & f_{p-1,p-2,p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} \\ f_{p-1,p-2,2p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} & f_{p-1,2p-2,p-2,p-1}^{p-1} \\ f_{p-1,p-2,2p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} \\ f_{p-1,p-2,2p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} \\ f_{p-1,p-2,2p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} & f_{p-1,2p-2,p-2,p-1}^{p-1} \\ f_{p-1,p-2,2p-2,p-2,p-2,p-2,p-2,p-1}^{p-1} & f_{p-1,2p-2,p-2,p-1}^{p-$$

Average polynomial time algorithms

These algorithms work via the computation of partial products of $r \times r$ matrices

 $M_0,\ldots,M_{N-1}\in\mathbb{Z}^{r\times r}$

reduced modulo coprime integers

 $m_0,\ldots,m_{N-1}\in\mathbb{Z}$

This can be accomplished in $O(r^2 N \log^3 N)$ time using $O(r^2 N \log N)$ space via an accumulating remainder tree.

In a simplified way, how small can we take r for smooth plane quartics?

Making *r* smaller will have other side effects, but in our 3 scenarios these are less significant.

We present three possibilities for $r \in \{66, 28, 16\}$

$$X: f(x_0, x_1, x_2) = 0, \qquad f \in \mathbb{Z}[x_0, x_1, x_2]$$

Consider the auxiliary polynomial $g = x_0^4 + x_1^4 + x_2^4$.

By looking at the binomial expansion of $(f + tg)^{p-1}$, where t is an auxiliary parameter, for certain sets of monomials S, we can construct $M_i \in \mathbb{Z}^{66 \times 66}$ so

$$M_i \cdot (g^{(p-1)-i}f^i)|_{S} = (g^{(p-1)-i-1}f^{i+1})|_{S} \mod p.$$

Using these matrices we can reduce the problem of computing C_p to a single accumulating remainder tree, and we only need 3 rows of the end result.

Computing

 $V_0 M_0 M_0 \cdots M_k \mod m_k$,

with $V_0 \in \{0,1\}^{3 \times 66}$ instead of $M_0 \cdots M_k \mod m_k$.

Key idea: there are relations between the neighbouring coefficients of f^m . In particular, f^m satisfies the following system of equations:

$$\partial_i(fg) = (m+1)(\partial_i f)g, \qquad i=0,\ldots,2,$$

where $\partial_i := x_i \partial / \partial x_i$ and *g* a polynomial of degree 4*m*.

Looking at the coefficient of x^w gives rise to a system linear equations

$$W_i \sum_{\deg x^t = d} f_t g_{w-t} = (m+1) \sum_{\deg x^t = d} t_i f_t g_{w-t}, \qquad i = 0, \dots, 2.$$

(The Euler identity implies that one of these 3 equations is redundant.)

We expect there to be two independent relations involving the *m* dots.

 x_{2}^{4m} **a a 0 0 0 0 0 0 0** X_1^{4m} X_0^{4m}

One is able to move if we assume some nondegeneracy conditions about X:

• $f(1,0,0)f(0,1,0)f(0,0,1) \neq 0$

 \Leftrightarrow X does not pass through the points (1,0,0), (0,1,0), and (0,0,1).

• $f(0, x_1, x_2), f(x_0, 0, x_2), f(x_0, x_1, 0)$ are square free $\Leftrightarrow X$ intersects the coordinate axes transversally.

Nondegeneracy is a very mild condition.

Almost every smooth plane quartic has a nondegenerate model.

If we are given an equation that is not nondegenerate, a random coordinate change will likely produce a nondegenerate one (provided p is not too small), and this does not change a_p or $\#X(\mathbb{F}_p)$.

- 1. Start with a triangle at one of the vertices, where the coefficients of f^{p-2} are trivial to compute.
- 2. Walk it around until we have computed all the target coefficients of f^{p-2} .
- 3. Deduce the relevant coefficients of f^{p-1} .

 x_{2}^{4p-2} 000 0000 00000 000000 0000000 00000000 000000000 0000000000 000000000000 0000000000000

- 1. Start with a triangle at one of the vertices, where the coefficients of f^{p-2} are trivial to compute.
- 2. Walk it around until we have computed all the target coefficients of f^{p-2} .
- 3. Deduce the relevant coefficients of f^{p-1} . Complexity:
 - •• $\rightarrow \rightarrow \log^{2+o(1)} p$ time
 - • $\stackrel{\frown}{\rightarrow}$ on average log $p^{3+o(1)}$ time one ART involving 28 × 28 matrices

Despite computing the Cartier–Manin matrix we have not yet used smoothness. Under the smoothness assumption one observes:

- the 28 imes 28 matrices have rank 16.
- 28/36 coefficients in the previous \bigtriangledown 's belong to 16 dimensional vector spaces.

This allows us to replace 28×28 matrices with 16×16 matrices.

Compressing isn't free!

The size of the coefficients in the matrices increase.

We can amortize this cost and still obtain a speedup factor at least $3 \sim (28/16)^2$.

Timings: average polynomial time versions

	16×16		28×28		Harvey (optimized)	
Ν	seconds	ms/p	seconds	ms/p	seconds	ms/p
2 ¹⁰	0.060	0.355	0.151	0.903	0.092	0.550
2 ¹²	0.280	0.500	1.12	2.01	0.592	1.06
2 ¹⁴	1.47	0.774	7.00	3.69	6.66	3.34
2 ¹⁶	8.08	1.24	36.9	5.65	74.4	11.4
2 ¹⁷	19.2	1.57	85.2	6.96	252	20.5
2 ¹⁸	44.8	1.95	192	8.37	676	29.4
2 ¹⁹	106	2.44	437	10.1	1680	38.6
2 ²⁰	241	2.94	991	12.1	4100	50.0
2 ²¹	543	3.49	2230	14.3	10800	69.3
2 ²²	1260	4.26	5040	17.0	29900	101
2 ²³	2950	5.23	11400	20.3	88200	156

Timings: quasilinear methods

-

	Cartier–Manin matrix			point counting		
р	16 × 16	28×28	Harvey (opt.)	Costa	smalljac	magma
2 ¹⁰ + 7	0.001	0.000	0.001	0.014	0.000	0.000
$2^{12} + 3$	0.002	0.000	0.006	0.023	0.001	0.020
$2^{14} + 27$	0.009	0.002	0.023	0.058	0.004	0.070
$2^{16} + 1$	0.033	0.006	0.089	0.192	0.023	0.300
$2^{18} + 3$	0.130	0.024	0.368	0.718	0.078	1.23
$2^{20} + 7$	0.527	0.092	1.41	2.84	0.324	5.50
$2^{22} + 15$	2.11	0.370	5.65	11.3	1.47	23.9
$2^{24} + 43$	8.43	1.46	23.4	44.9	6.44	99.3
$2^{26} + 15$	33.7	5.83	90.4	180	26.9	723
$2^{28} + 3$	135	23.4	361	719	114	3080
$2^{30} + 3$	539	93.1	1480	3130	465	13600

Timings: against other genus 3 methods

	plane	geometrically	rationally	2-cover of a	3-cover	4-cover
Ν	quartic	hyperelliptic	hyperelliptic	genus 1 curve	of \mathbb{P}^1	of \mathbb{P}^1
2 ¹⁰	0.058	0.053	0.007	0.021	0.006	0.006
2 ¹²	0.281	0.126	0.011	0.070	0.008	0.008
2 ¹⁴	1.49	0.724	0.065	0.326	0.030	0.028
2 ¹⁶	8.00	5.42	0.829	1.77	0.333	0.285
2 ¹⁸	44.6	29.6	10.0	10.1	2.38	2.15
2 ²⁰	241	168	55.6	57.2	15.3	12.2
2 ²¹	543	388	133	133	36.1	29.6
2 ²²	1260	921	320	315	87.6	72.0
2 ²³	2950	2160	746	748	214	173
2 ²⁴	6840	4860	1760	1750	514	410
2 ²⁵	15600	11200	4120	4050	1220	975
2 ²⁶	35600	26000	9560	9370	2880	2350

- Harvey (2018) < 100
- Costa (2022) = 210

and a 15²

المسل المسل