
Counting points on smooth plane quartics

Edgar Costa (MIT)
Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation

August, 2022
Algorithmic Number Theory Symposium XV (ANTS)

Slides available at edgarcosta.org

Joint work with David Harvey and Andrew Sutherland.

edgarcosta.org


L-function of a smooth projective curve

X/Q smooth projective curve of genus g.

L(X, s) =
∑
n⩾1

an
ns =

∏
p

1
Lp(p−s)

,

where Lp(T) ∈ 1+ TZ[T] and deg Lp(T) ⩽ 2g.

Zp(T) := exp

(∑
r⩾1

#X(Fpr)
Tr
r

)
=

Lp(T)
(1− T)(1− pT)

in particular
ap = p+ 1−#X(Fp)

Understanding an → Birch–Swinnerton-Dyer, Lang–Trotter, Sato–Tate, …



We need fast algorithms to compute ap

L(X, s) =
∑
n⩾1

an
ns =

∏
p

1
Lp(p−s)

=
∏
p

1
1− app−s + · · ·

,

To compute an for n ⩽ N we only need to compute ape for pe ⩽ N.

The cost is dominated by computing ap := Tr(Frobp |H1(X)) ∈ [−2g√p, 2g√p]

We know how to do this efficiently in N(logN)O(1) for cyclic covers of P1

X : ym = f(x), f ∈ Z[x]

• elliptic: Schoof (1985) — using group structure
• hyperelliptic: Harvey (2014), Harvey–Sutherland (2014, 2016)
• geometric hyperelliptic: Harvey–Massierer–Sutherland (2016)
• superelliptic: Sutherland (2020)

Apart from Schoof’s, they all work by computing g2 coefficients of f(x)O(p).

Today: smooth plane quartics



We need fast algorithms to compute ap

L(X, s) =
∑
n⩾1

an
ns =

∏
p

1
Lp(p−s)

=
∏
p

1
1− app−s + · · ·

,

To compute an for n ⩽ N we only need to compute ape for pe ⩽ N.

The cost is dominated by computing ap := Tr(Frobp |H1(X)) ∈ [−2g√p, 2g√p]

We know how to do this efficiently in N(logN)O(1) for cyclic covers of P1

X : ym = f(x), f ∈ Z[x]

• elliptic: Schoof (1985) — using group structure
• hyperelliptic: Harvey (2014), Harvey–Sutherland (2014, 2016)
• geometric hyperelliptic: Harvey–Massierer–Sutherland (2016)
• superelliptic: Sutherland (2020)

Apart from Schoof’s, they all work by computing g2 coefficients of f(x)O(p).

Today: smooth plane quartics



We need fast algorithms to compute ap

The cost is dominated by computing ap := Tr(Frobp |H1(X)) ∈ [−2g√p, 2g√p]

We know how to do this efficiently in N(logN)O(1) for cyclic covers of P1

X : ym = f(x), f ∈ Z[x]

• elliptic: Schoof (1985) — using group structure

• hyperelliptic: Harvey (2014), Harvey–Sutherland (2014, 2016)
• geometric hyperelliptic: Harvey–Massierer–Sutherland (2016)
• superelliptic: Sutherland (2020)

Apart from Schoof’s, they all work by computing g2 coefficients of f(x)O(p).

Today: smooth plane quartics



We need fast algorithms to compute ap

The cost is dominated by computing ap := Tr(Frobp |H1(X)) ∈ [−2g√p, 2g√p]

We know how to do this efficiently in N(logN)O(1) for cyclic covers of P1

X : ym = f(x), f ∈ Z[x]

• elliptic: Schoof (1985) — using group structure
• hyperelliptic: Harvey (2014), Harvey–Sutherland (2014, 2016)
• geometric hyperelliptic: Harvey–Massierer–Sutherland (2016)
• superelliptic: Sutherland (2020)

Apart from Schoof’s, they all work by computing g2 coefficients of f(x)O(p).

Today: smooth plane quartics



We need fast algorithms to compute ap

The cost is dominated by computing ap := Tr(Frobp |H1(X)) ∈ [−2g√p, 2g√p]

We know how to do this efficiently in N(logN)O(1) for cyclic covers of P1

X : ym = f(x), f ∈ Z[x]

• elliptic: Schoof (1985) — using group structure
• hyperelliptic: Harvey (2014), Harvey–Sutherland (2014 , 2016)
• geometric hyperelliptic: Harvey–Massierer–Sutherland (2016 )
• superelliptic: Sutherland (2020 )

Apart from Schoof’s, they all work by computing g2 coefficients of f(x)O(p).

Today: smooth plane quartics



We need fast algorithms to compute ap

The cost is dominated by computing ap := Tr(Frobp |H1(X)) ∈ [−2g√p, 2g√p]

We know how to do this efficiently in N(logN)O(1) for cyclic covers of P1

X : ym = f(x), f ∈ Z[x]

• elliptic: Schoof (1985) — using group structure
• hyperelliptic: Harvey (2014), Harvey–Sutherland (2014 , 2016)
• geometric hyperelliptic: Harvey–Massierer–Sutherland (2016 )
• superelliptic: Sutherland (2020 )

Apart from Schoof’s, they all work by computing g2 coefficients of f(x)O(p).

Today: smooth plane quartics



Smooth plane quartics

Smooth plane quartics are generic g = 3 curves given as

X : f(x0, x1, x2) = 0, f ∈ Z[x0, x1, x2], deg f = 4

and computing ap := Tr(Frobp |H1(X)) for p ⩽ N in N(logN)O(1)

We will present three algorithms to do this.

We will in fact compute the Cartier–Manin matrix Cp ∈ F3×3p .

Suffices for p large enough, as Tr Cp ≡ ap mod p and ap ∈ [−6√p, 6√p].

Cp :=


f p−1p−1, p−1, 2p−2 f p−12p−1, p−1, p−2 f p−1p−1, 2p−1,p−2

f p−1p−2, p−1, 2p−1 f p−12p−2, p−1, p−1 f p−1p−2, 2p−1,p−1

f p−1p−1, p−2, 2p−1 f p−12p−1, p−2, p−1 f p−1p−1, 2p−2,p−1

 ,

where f p−1i,j,k denotes the coefficient of the term xi0x
j
1xk2 in f(x0, x1, x2)p−1.



Smooth plane quartics

Smooth plane quartics are generic g = 3 curves given as

X : f(x0, x1, x2) = 0, f ∈ Z[x0, x1, x2], deg f = 4

and computing ap := Tr(Frobp |H1(X)) for p ⩽ N in N(logN)O(1)

We will present three algorithms to do this.

We will in fact compute the Cartier–Manin matrix Cp ∈ F3×3p .

Suffices for p large enough, as Tr Cp ≡ ap mod p and ap ∈ [−6√p, 6√p].

Cp :=


f p−1p−1, p−1, 2p−2 f p−12p−1, p−1, p−2 f p−1p−1, 2p−1,p−2

f p−1p−2, p−1, 2p−1 f p−12p−2, p−1, p−1 f p−1p−2, 2p−1,p−1

f p−1p−1, p−2, 2p−1 f p−12p−1, p−2, p−1 f p−1p−1, 2p−2,p−1

 ,

where f p−1i,j,k denotes the coefficient of the term xi0x
j
1xk2 in f(x0, x1, x2)p−1.



Visualization of the Cartier–Manin matrix for p = 7


f p−1p−1, p−1, 2p−2 f p−12p−1, p−1, p−2 f p−1p−1, 2p−1,p−2

f p−1p−2, p−1, 2p−1 f p−12p−2, p−1, p−1 f p−1p−2, 2p−1,p−1

f p−1p−1, p−2, 2p−1 f p−12p−1, p−2, p−1 f p−1p−1, 2p−2,p−1

 ⇝

x4(p−1)0 x4(p−1)1

x4(p−1)2



Average polynomial time algorithms

These algorithms work via the computation of partial products of r× r matrices

M0, . . . ,MN−1 ∈ Zr×r

reduced modulo coprime integers

m0, . . . ,mN−1 ∈ Z

This can be accomplished in O(r2N log3 N) time using O(r2N logN) space via an
accumulating remainder tree.

In a simplified way, how small can we take r for smooth plane quartics?

Making r smaller will have other side effects, but in our 3 scenarios these are less
significant.

We present three possibilities for r ∈ {66, 28, 16}



Old algorithm: (Optimized) Harvey – Computing zeta func. of arithmetic schemes

X : f(x0, x1, x2) = 0, f ∈ Z[x0, x1, x2]
Consider the auxiliary polynomial g = x40 + x41 + x42 .

By looking at the binomial expansion of (f+ tg)p−1, where t is an auxiliary
parameter, for certain sets of monomials S, we can construct Mi ∈ Z66×66 so

Mi ·
(
g (p−1)−if i

)
|
S
=
(
g (p−1)−i−1f i+1

)
|
S
mod p.

Using these matrices we can reduce the problem of computing Cp to a single
accumulating remainder tree, and we only need 3 rows of the end result.

Computing
V0M0M0 · · ·Mk mod mk,

with V0 ∈ {0, 1}3×66 instead of M0 · · ·Mk mod mk.



New algorithm

Key idea: there are relations between the neighbouring coefficients of fm.

In particular, fm satisfies the following system of equations:

∂i(fg) = (m+ 1)(∂if)g, i = 0, . . . , 2,

where ∂i := xi∂/∂xi and g a polynomial of degree 4m.

Looking at the coefficient of xw gives rise to a system linear equations

wi
∑

deg xt=d

ftgw−t = (m+ 1)
∑

deg xt=d

tiftgw−t, i = 0, . . . , 2.

(The Euler identity implies that one of these 3 equations is redundant.)



Example d = 4 and m = 4

We expect there to be two independent relations involving the dots.

x4m0 x4m1

x4m2



Example d = 4 and m = 4

Combining enough relations we can to move a larger triangle.

x4m0 x4m1

x4m2



Example d = 4 and m = 4

Combining enough relations we can to move a larger triangle.

x4m0 x4m1

x4m2



Example d = 4 and m = 4

Combining enough relations we can to move a larger triangle.

x4m0 x4m1

x4m2



Example d = 4 and m = 4

Combining enough relations we can to move a larger triangle.

x4m0 x4m1

x4m2

=⇒

x4m0 x4m1

x4m2



Nondegeneracy condition

One is able to move if we assume some nondegeneracy conditions about X:

• f(1, 0, 0)f(0, 1, 0)f(0, 0, 1) ̸= 0
⇔ X does not pass through the points (1, 0, 0), (0, 1, 0), and (0, 0, 1).

• f(0, x1, x2), f(x0, 0, x2), f(x0, x1, 0) are square free
⇔ X intersects the coordinate axes transversally.

Nondegeneracy is a very mild condition.
Almost every smooth plane quartic has a nondegenerate model.

If we are given an equation that is not nondegenerate, a random coordinate
change will likely produce a nondegenerate one (provided p is not too small), and
this does not change ap or #X(Fp).



New algorithm

1. Start with a triangle at one of the vertices,
where the coefficients of f p−2 are trivial to
compute.

2. Walk it around until we have computed all
the target coefficients of f p−2.

3. Deduce the relevant coefficients of f p−1.

Complexity:

• • → • log2+o(1) p time

• • → • on average log p3+o(1) time
one ART involving 28× 28 matrices

x4p−20 x4p−21

x4p−22



New algorithm

1. Start with a triangle at one of the vertices,
where the coefficients of f p−2 are trivial to
compute.

2. Walk it around until we have computed all
the target coefficients of f p−2.

3. Deduce the relevant coefficients of f p−1.
Complexity:

• • → • log2+o(1) p time

• • → • on average log p3+o(1) time
one ART involving 28× 28 matrices

x4p−20 x4p−21

x4p−22



New algorithm (compressed version)

Despite computing the Cartier–Manin matrix we have not yet used smoothness.

Under the smoothness assumption one observes:

• the 28× 28 matrices have rank 16.
• 28/36 coefficients in the previous ▽’s belong to 16 dimensional vector spaces.

This allows us to replace 28× 28 matrices with 16× 16 matrices.

Compressing isn’t free!
The size of the coefficients in the matrices increase.
We can amortize this cost and still obtain a speedup factor at least 3 ∼ (28/16)2.



Timings: average polynomial time versions

16× 16 28× 28 Harvey (optimized)

N seconds ms/p seconds ms/p seconds ms/p

210 0.060 0.355 0.151 0.903 0.092 0.550
212 0.280 0.500 1.12 2.01 0.592 1.06
214 1.47 0.774 7.00 3.69 6.66 3.34
216 8.08 1.24 36.9 5.65 74.4 11.4
217 19.2 1.57 85.2 6.96 252 20.5
218 44.8 1.95 192 8.37 676 29.4
219 106 2.44 437 10.1 1680 38.6
220 241 2.94 991 12.1 4100 50.0
221 543 3.49 2230 14.3 10800 69.3
222 1260 4.26 5040 17.0 29900 101
223 2950 5.23 11400 20.3 88200 156



Timings: quasilinear methods

Cartier–Manin matrix point counting

p 16× 16 28× 28 Harvey (opt.) Costa smalljac magma
210 + 7 0.001 0.000 0.001 0.014 0.000 0.000
212 + 3 0.002 0.000 0.006 0.023 0.001 0.020
214 + 27 0.009 0.002 0.023 0.058 0.004 0.070
216 + 1 0.033 0.006 0.089 0.192 0.023 0.300
218 + 3 0.130 0.024 0.368 0.718 0.078 1.23
220 + 7 0.527 0.092 1.41 2.84 0.324 5.50
222 + 15 2.11 0.370 5.65 11.3 1.47 23.9
224 + 43 8.43 1.46 23.4 44.9 6.44 99.3
226 + 15 33.7 5.83 90.4 180 26.9 723
228 + 3 135 23.4 361 719 114 3080
230 + 3 539 93.1 1480 3130 465 13600



Timings: against other genus 3 methods

N
plane
quartic

geometrically
hyperelliptic

rationally
hyperelliptic

2-cover of a
genus 1 curve

3-cover
of P1

4-cover
of P1

210 0.058 0.053 0.007 0.021 0.006 0.006
212 0.281 0.126 0.011 0.070 0.008 0.008
214 1.49 0.724 0.065 0.326 0.030 0.028
216 8.00 5.42 0.829 1.77 0.333 0.285
218 44.6 29.6 10.0 10.1 2.38 2.15
220 241 168 55.6 57.2 15.3 12.2
221 543 388 133 133 36.1 29.6
222 1260 921 320 315 87.6 72.0
223 2950 2160 746 748 214 173
224 6840 4860 1760 1750 514 410
225 15600 11200 4120 4050 1220 975
226 35600 26000 9560 9370 2880 2350



counter

• Harvey (2018) < 100
• Costa (2022) = 210



and a 152 safety net


