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Riemann zeta function: the prototypical L-function

ζ(s = x + iy) = 1+ 1
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Used by Chebyshev to study the distribution of primes.

The formula above works for x > 1, e.g., ζ(2) =
∑

n≥1
1
n2 = π2/6.

Riemann was the first to consider it as a complex function and showed it has
meromorphic continuation to C.
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Riemann zeta function functional equation

ζ(s = x + iy) =
+∞∑
n=1

1
ns

=
∏

p is prime

1
1− p−s

, <(s) > 1

Functional equation relates s↔ 1− s

ζ(s) = Γζ(s)ζ(1− s)

Riemann showed ζ(s) = 0⇔

s = −2n n ∈ N

0 < <(s) < 1

Riemann hypothesis
ζ(s) = 0 and 0 < <(s) < 1 =⇒ <(s) = 1/2

One of the Millennium Prize Problems.
The roots ζ(s) describe the distribution of the primes.
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Comparison by Zagier (1977)

x/(log x − 1.08366) vs li(x) vs R0(x)



Rational L-functions

• Euler products L(s) =
∏
p Fp(p−s)−1 with

Fp(t) = 1− apt + · · · ∈ Z[t] and deg Fp(t) ≤ d

• ⇒ Dirichlet series

L(s) =
∑
n≥1

ann−s where anm = anam if gcd(n,m) = 1

Enough to know apn to deduce the rest, for p a prime number.
• Functional equation

Λ(s) := Ns/2ΓL(s) · L(s) = εΛ((1+ w)− s),

• ΓL(s) are defined in terms of Γ-function.
• ε ∈ {z ∈ C : |z| = 1} is the root number
• N is the conductor of L(s),
• w ∈ N is the (motivic) weight of L(s).
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Sources of L-functions

• Characters χ associated to a number field F give us an L-function of degree
[F : Q] and motivic weight 0

• Artin representations associated to a Galois number field F give us an
L-function of degree at most [F : Q] and motivic weight 0

• Classical modular forms f =
∑

n>0 anqn of weight k give us an L-function of
degree degree 2[Q(an) : Q], motivic weight k− 1, and conductor N[Q(an):Q].

• Elliptic curves gives us degree 2 L-functions with motivic weight 1

Fp(t) = 1− apt + pt2, ap := p+ 1−#E(Fp)

• In general, for a projective variety X, we can associate an L-function to Hn(X)

Fp(t) = det(1− t Frob |Hnet(X)).

This gives an L-function of degree dimHn(X) and motivic weight n.
Note that by Lefschetz fixed-point theorem, we have

exp

( ∞∑
m=1

#X(Fpm)
m

tm
)

=
∏
i

det(1− t Frob |Hnet(X))(−1)
i+1
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Computing the Dirichlet series

For several applications (special values, zeros, statistics, · · · ) one desires to
compute an approximation by truncating the Dirichlet series

∑
n≤B ann−s.

Depending on the application B we may want B = O(
√
N),O(N), or simply O(1).

Theorem [Harvey]
One can compute

exp

( ∞∑
m=1

#X(Fpm)
m

tm
)

=
∏
i

det(1− t Frob |Hnet(X))(−1)
i+1

for all primes p < B in B(log B)3+o(1).

In other words, we can compute Fp(t) on average in (log p)4+o(1).
Unfortunately, the constants involved make it unpractical without further
specialization.
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Computing Dirichlet series

Goal
Compute Fp(t) for all primes p < B in B(log B)3+o(1).

In other words, we can compute Fp(t) on average in (log p)4+o(1).

There are several classes of L-functions for which we can do better:

• Dirichlet/Hecke characters
• Artin representations
• Elliptic curves

We do not need the full Euler factor Fp(t) for most p.
For example, Fp(t) mod t2 is sufficient for all p ∈ [B1/2,B].
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Example: Remainder tree for Hyperelliptic curves

X : y2 = f (x, z), with f ∈ Z[x, y] a homogeneous polynomial of degree 2g+ 2.
X is an hyperelliptic curve of genus g.

#X(Fp) =
∑

t∈P1(Fp)

[(
f (t)
p

)
+ 1
]

≡ 1+
∑

t∈P1(Fp)

f (t)(p−1)/2 ≡ 1−
g∑
i=1

f (p−1)/2(p−1)i (mod p),

where f ki is the coefficient of x
i in f (x, 1)k.

Therefore, we may compute #X(Fp) by computing g coefficients of f (p−1)/2.

Each of the desired coefficients may be obtained via a matrix-vector product

v · A(1) · · ·A(p−12 ) mod p, where A(x) ∈ M2g+2(Z[x]).

One can amortize these products by taking advantage of the redundancies.
This leads to an algorithm to compute ap for p < B in B(log B)3+o(1) time.
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L-functions via remainder tree algorithms

These techniques have lead to several practical algorithms:

• Wilson primes search: (p− 1)! mod p2 [C–Gerbicz–Harvey]

• L-functions of hyperelliptic curves y2 = f (x) : v · A(1) · · ·A(p−12 ) mod p
[Harvey, Harvey–Sutherland2, Harvey–Massierer–Sutherland]

• L-functions of superelliptic curves yr = f (x): v · A(1) · · ·A(p−•
r ) mod p

[Sutherland]
• L-functions of smooth plane quartics: v · A(1) · · ·A(p− 1) mod p
[C–Harvey–Sutherland]

• L-functions of Hypergeometric motives:
∑p−1

m=0
(α)m
(β)m

zm [C–Kedlaya–Roe2]

All these algorithms have a p-adic flavor.



L-functions via remainder tree algorithms

These techniques have lead to several practical algorithms:

• Wilson primes search: (p− 1)! mod p2 [C–Gerbicz–Harvey]
• L-functions of hyperelliptic curves y2 = f (x) : v · A(1) · · ·A(p−12 ) mod p
[Harvey, Harvey–Sutherland2, Harvey–Massierer–Sutherland]

• L-functions of superelliptic curves yr = f (x): v · A(1) · · ·A(p−•
r ) mod p

[Sutherland]
• L-functions of smooth plane quartics: v · A(1) · · ·A(p− 1) mod p
[C–Harvey–Sutherland]

• L-functions of Hypergeometric motives:
∑p−1

m=0
(α)m
(β)m

zm [C–Kedlaya–Roe2]

All these algorithms have a p-adic flavor.



L-functions via remainder tree algorithms

These techniques have lead to several practical algorithms:

• Wilson primes search: (p− 1)! mod p2 [C–Gerbicz–Harvey]
• L-functions of hyperelliptic curves y2 = f (x) : v · A(1) · · ·A(p−12 ) mod p
[Harvey, Harvey–Sutherland2, Harvey–Massierer–Sutherland]

• L-functions of superelliptic curves yr = f (x): v · A(1) · · ·A(p−•
r ) mod p

[Sutherland]

• L-functions of smooth plane quartics: v · A(1) · · ·A(p− 1) mod p
[C–Harvey–Sutherland]

• L-functions of Hypergeometric motives:
∑p−1

m=0
(α)m
(β)m

zm [C–Kedlaya–Roe2]

All these algorithms have a p-adic flavor.



L-functions via remainder tree algorithms

These techniques have lead to several practical algorithms:

• Wilson primes search: (p− 1)! mod p2 [C–Gerbicz–Harvey]
• L-functions of hyperelliptic curves y2 = f (x) : v · A(1) · · ·A(p−12 ) mod p
[Harvey, Harvey–Sutherland2, Harvey–Massierer–Sutherland]

• L-functions of superelliptic curves yr = f (x): v · A(1) · · ·A(p−•
r ) mod p

[Sutherland]
• L-functions of smooth plane quartics: v · A(1) · · ·A(p− 1) mod p
[C–Harvey–Sutherland]

• L-functions of Hypergeometric motives:
∑p−1

m=0
(α)m
(β)m

zm [C–Kedlaya–Roe2]

All these algorithms have a p-adic flavor.



L-functions via remainder tree algorithms

These techniques have lead to several practical algorithms:

• Wilson primes search: (p− 1)! mod p2 [C–Gerbicz–Harvey]
• L-functions of hyperelliptic curves y2 = f (x) : v · A(1) · · ·A(p−12 ) mod p
[Harvey, Harvey–Sutherland2, Harvey–Massierer–Sutherland]

• L-functions of superelliptic curves yr = f (x): v · A(1) · · ·A(p−•
r ) mod p

[Sutherland]
• L-functions of smooth plane quartics: v · A(1) · · ·A(p− 1) mod p
[C–Harvey–Sutherland]

• L-functions of Hypergeometric motives:
∑p−1

m=0
(α)m
(β)m

zm [C–Kedlaya–Roe2]

All these algorithms have a p-adic flavor.



p-adic algorithms for L-functions

Given a projective variety X, we can associate an L-function to Hn(X) via

Fp(t) = det(1− t Frob |Hnet(X,Z`)) ∈ Z[x].

One approach to compute Fp, is to compute Fp(t) mod ` for several `. This is only
practical if there is a nice description of Hnet(X,Z`)), e.g., Tate modules.

Alternatively, one may replace Hnet(X,Z`) with a p-adic cohomology theory, i.e., a
cohomology theory with coefficients in Qp, e.g.,

Fp(t) = det(1− t Frob |Hnrig(X)) ∈ Z[x].

and compute a p-adic approximation of the matrix representing Frob.

If X is an hypersurface, Monsky–Washnitzer cohomology provides a nice
description for the primitive cohomology of X PH†,n(X) in terms of de Rham
cohomology with overconvergent power series.
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Overall picture

Goal
Compute the matrix representing the action of Frob in PH†,n(X) with enough
p-adic precision.

PHn−1dR (XQp)
∼
id

// PH†,n−1(X)

Frob





explicit description over C
[Dwork–Griffiths, Batyrev–Cox]

��
de Rham cohomology

with overconvergent power series

��

cohomology relations
+

commutative algebra
=⇒

basis for PHn−1dR (XQp)

+
reduction algorithm
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L-functions of hypersurfaces in a toric variety

Theorem [C–Harvey–Kedlaya]

Given a polynomial f =
∑

α∈Zn+1
cαxα ∈ Fp[x±1 , . . . , x

±
n ] defining nondegenerate

hypersurface V(f ) in a toric variety P∆ one can compute

det(1− t Frob |PHnrig(X)) ∈ Z[x]

in p1+o(1) vol(∆)O(n) time.

To compute an for n ≤ B, this leads to a B2+o(1) algorithm.

Implementation
• Projective hypersurfaces:
C++ library: github.com/edgarcosta/controlledreduction
Sage wrapper: github.com/edgarcosta/pycontrolledreduction

• Toric hypersurfaces:
C++ library: github.com/edgarcosta/ToricControlledReduction

github.com/edgarcosta/controlledreduction
github.com/edgarcosta/pycontrolledreduction
github.com/edgarcosta/ToricControlledReduction
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L-functions of hypersurfaces in a toric variety
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∑
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in p1+o(1) vol(∆)O(n) time.

To compute an for n ≤ B, this leads to a B2+o(1) algorithm.

Fits well in the remainder tree algorithm infrastructure, so in theory, can reduce
the average time complexity for each prime to

log(N)4+o(1) vol(∆)O(n).
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K3 surfaces

Naturally arise as hypersurfaces in 95 weighted projective spaces.

• smooth quartic surface in P3

X : f (x, y, z,w) = 0, deg f = 4

• double cover of P2 branched over a sextic curve P(3, 1, 1, 1)

X : w2 = f (x, y, z), deg f = 6

Pic(Xal) ' H1,1(X) ∩ H2(X,Z) ( H2(X,Z) ' (−E8)2 ⊕ U3 ' Z22

H2(X,Q) ' Pic(Xal)Q ⊕ T(X)Q

The L-functions associated to Pic(Xal) are associated to Artin representations.
New and interesting L-functions arise from T(X).

If X is an hypersurface in a toric variety P∆, then rk Pic Xal ≥ rk Pic X∆.
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Example: K3 surface in the Dwork pencil

Consider the projective quartic surface X in P3Fp given by

x4 + y4 + z4 + w4 + λxyzw = 0.

For λ = 1 and p = 220− 3, using the old projective code in 3h36m we compute that

ζX(t)−1 = (1− t)(1− pt)16(1+ pt)3(1− p2t)Q(t),

where the “interesting” factor is

Q(t) = (1+ pt)(1− 1688538t + p2t2).

The polynomials R1 and R2 arise from the action of Frobenius on the Picard
lattice; by a p-adic formula of de la Ossa–Kadir.

Q(t) can be interpreted as an Euler factor of Sym2 E.



Example: a quartic surface in the Dwork pencil

Consider the projective quartic surface X in P3Fp given by

x4 + y4 + z4 + w4 + λxyzw = 0.

For λ = 1 and p = 220 − 3, using the toric old projective code in 37s 3h36m we
compute

ζX(t)−1 = (1− t)(1− pt)16(1+ pt)3(1− p2t)(1+ pt)(1− 1688538t + p2t2).

The defining monomials of X generate a sublattice of
index 42 in Z3, and we can work “in” that sublattice,
by using

x4y−1z−1 + λx + y + z + 1 = 0

which has a polytope much smaller than the full
simplex (32/3 ≈ 10.6 vs 2/3 ≈ 0.6).
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Example: a hypergeometric motive (also a K3 surface)

Consider the appropriate completion
of the toric surface over Fp with p = 215 − 19 given by

x3y + y4 + z4 − 12xyz + 1 = 0.

In 1.3s, we compute
that the “interesting” factor of ζX(t) is (up to rescaling)

pQ(t/p) = p+ 20508t1 − 18468t2 − 26378t3 − 18468t4 + 20508t5 + pt6.

In P3 this surface is degenerate, and would have taken us 13m26s to do the same
computation with a dense model.
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x3y + y4 + z4 − 12xyz + 1 = 0.

In 1.3s, we compute
that the “interesting” factor of ζX(t) is (up to rescaling)

pQ(t/p) = p+ 20508t1 − 18468t2 − 26378t3 − 18468t4 + 20508t5 + pt6.

In P3 this surface is degenerate, and would have taken us 13m26s to do the same
computation with a dense model.
We can confirm the linear term with Magma:
C2F2 := HypergeometricData([6,12], [1,1,1,2,3]);

EulerFactor(C2F2, 2^10 * 3^6, 2^15-19: Degree:=1);

1 + 20508*$.1 + O($.1^2)



Example: a hypergeometric motive (also a K3 surface)

Consider the appropriate completion
of the toric surface over Fp with p = 215 − 19 given by

x3y + y4 + z4 − 12xyz + 1 = 0.

In 1.3s, we compute
that the “interesting” factor of ζX(t) is (up to rescaling)

pQ(t/p) = p+ 20508t1 − 18468t2 − 26378t3 − 18468t4 + 20508t5 + pt6.

In P3 this surface is degenerate, and would have taken us 13m26s to do the same
computation with a dense model.
We can compute all the ap for p ≤ 218 in 4s
H = AmortizingHypergeometricData(cyclotomic=[[6,12],[1,1,1,2,3]])

time aps = H.amortized_padic_H_values(1/(2^10*3^6), 2^18)

user 4.01 s, sys: 15.9 ms, total: 4.02 s



Example: a K3 surface in a non weighted projective space

Consider the surface X defined as the closure (in P∆) of the affine surface defined
by the Laurent polynomial

3x + y + z + x−2y2z + x3y−6z−2 + 3x−2y−1z−2

− 2− x−1y − y−1z−1 − x2y−4z−1 − xy−3z−1.

The Hodge numbers of PH2(X) are (1, 14, 1). For p = 215 − 19, in 2m14s we obtain
the “interesting” factor of ζX(t):

pQ(t/p) = (1− t) · (1+ t) · (p+ 33305t1 + 1564t2 − 14296t3 − 11865t4

+ 5107t5 + 27955t6 + 25963t7 + 27955t8 + 5107t9

− 11865t10 − 14296t11 + 1564t12 + 33305t13 + pt14).

We know of no previous algorithm that can compute ζX(t) for p in this range!



Example: random dense K3 surface

X ⊂ P3Fp given by
− 9x4 − 10x3y − 9x2y2 + 2xy3 − 7y4 + 6x3z + 9x2yz − 2xy2z + 3y3z

+ 8x2z2 + 6y2z2 + 2xz3 + 7yz3 + 9z4 + 8x3w + x2yw − 8xy2w − 7y3w
+ 9x2zw − 9xyzw + 3y2zw − xz2w − 3yz2w + z3w − x2w2 − 4xyw2

− 3xzw2 + 8yzw2 − 6z2w2 + 4xw3 + 3yw3 + 4zw3 − 5w4 = 0

For p = 215 − 19, in 38m27s, we obtain

ζX(t) = ((1− t)(1− pt)(1− p2t)Q(t))−1

where

pQ(t/p) = (t + 1)
(
p− 53159t1 + 10023t2 − 3204t3 + 49736t4 − 56338t5

+ 43086t6 − 48180t7 + 44512t8 − 42681t9 + 47794t10

− 42681t11 + 44512t12 − 48180t13 + 43086t14 − 56338t15

+ 49736t16 − 3204t17 + 10023t18 − 53159t19 + pt20
)

Old implementation takes roughly the same time.



Example: a quintic threefold in the Dwork pencil

Consider the threefold X in P4Fp for p = 220 − 3 given by

x50 + · · ·+ x54 + x0x1x2x3x5 = 0.

In 5m48s, we compute that

ζX(t) =
R1(pt)20R2(pt)30S(t)

(1− t)(1− pt)(1− p2t)(1− p3t)
where the “interesting” factor is

S(t) = 1+ 74132440T + 748796652370pT2 + 74132440p3T3 + p6T4.

and R1 and R2 are the numerators of the zeta functions of certain curves (given by
a formula of Candelas–de la Ossa–Rodriguez Villegas).

Using the old projective code, we extrapolate it would have taken us at least 120
days.



Example: a Calabi–Yau 3fold in a non weighted projective space

Let X be the closure (in P∆) of the affine threefold

xyz2w3 + x + y + z − 1+ y−1z−1 + x−2y−1z−2w−3 = 0.

For p = 220 − 3, in 42m, we computed the “interesting” factor of ζX(t)

(1+ 718pt + p3t2)(1+ 1188466826t + 1915150034310pt2 + 1188466826p3t3 + p6t4).

Calabi–Yau threefolds can arise as hypersurfaces in:

• 7555 weighted projective spaces;
• 473,800,776 toric varieties.

See http://hep.itp.tuwien.ac.at/~kreuzer/CY/.

http://hep.itp.tuwien.ac.at/~kreuzer/CY/
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