Computing L-functions

Edgar Costa (MIT)

November 12, 2024, Murmurations in Arithmetic Geometry and Related Topics Slides available at edgarcosta.org under Talks

Riemann zeta function: the prototypical L-function

$$\zeta(s = x + iy) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots = \sum_{n=1}^{+\infty} \frac{1}{n^s}$$
$$= \left(1 - \frac{1}{2^s}\right)^{-1} \left(1 - \frac{1}{3^s}\right)^{-1} \dots = \prod_{\substack{p \text{ is prime}}} \frac{1}{1 - p^{-s}}$$

Riemann zeta function: the prototypical L-function

$$\zeta(s = x + iy) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots = \sum_{n=1}^{+\infty} \frac{1}{n^s}$$
$$= \left(1 - \frac{1}{2^s}\right)^{-1} \left(1 - \frac{1}{3^s}\right)^{-1} \dots = \prod_{p \text{ is prime}} \frac{1}{1 - p^{-s}}$$

Used by Chebyshev to study the distribution of primes.

The formula above works for x > 1, e.g., $\zeta(2) = \sum_{n \ge 1} \frac{1}{n^2} = \pi^2/6$.

Riemann was the first to consider it as a complex function and showed it has meromorphic continuation to \mathbb{C} .

Riemann zeta function functional equation

$$\zeta(s = x + iy) = \sum_{n=1}^{+\infty} \frac{1}{n^s} = \prod_{p \text{ is prime}} \frac{1}{1 - p^{-s}}, \quad \Re(s) > 1$$

Functional equation relates $s \leftrightarrow 1 - s$

$$\zeta(s) = \Gamma_{\zeta}(s)\zeta(1-s)$$

Riemann showed
$$\zeta(s) = 0 \Leftrightarrow \begin{cases} s = -2n \ n \in \mathbb{N} \\ 0 < \Re(s) < 1 \end{cases}$$

Riemann hypothesis

$$\zeta(s) = 0$$
 and $0 < \Re(s) < 1 \Longrightarrow \Re(s) = 1/2$

One of the Millennium Prize Problems.

The roots $\zeta(s)$ describe the distribution of the primes.

Comparison by Zagier (1977)

$$x/(\log x - 1.08366)$$
 vs $Ii(x)$ vs $R_0(x)$

Rational L-functions

• Euler products $L(s) = \prod_{p} F_{p}(p^{-s})^{-1}$ with

$$F_p(t) = 1 - a_p t + \cdots \in \mathbb{Z}[t]$$
 and $\deg F_p(t) \le d$

Rational L-functions

• Euler products $L(s) = \prod_{p} F_{p}(p^{-s})^{-1}$ with

$$F_p(t) = 1 - a_p t + \dots \in \mathbb{Z}[t]$$
 and $\deg F_p(t) \le d$

 $\cdot \Rightarrow$ Dirichlet series

$$L(s) = \sum_{n>1} a_n n^{-s} \text{ where } a_{nm} = a_n a_m \text{ if } gcd(n,m) = 1$$

Enough to know a_{p^n} to deduce the rest, for p a prime number.

Rational L-functions

• Euler products $L(s) = \prod_{p} F_{p}(p^{-s})^{-1}$ with

$$F_p(t) = 1 - a_p t + \cdots \in \mathbb{Z}[t]$$
 and $\deg F_p(t) \le d$

· ⇒ Dirichlet series

$$L(s) = \sum_{n>1} a_n n^{-s}$$
 where $a_{nm} = a_n a_m$ if $gcd(n, m) = 1$

Enough to know a_{p^n} to deduce the rest, for p a prime number.

Functional equation

$$\Lambda(s) := N^{s/2} \Gamma_L(s) \cdot L(s) = \varepsilon \overline{\Lambda}((1+w) - s),$$

- $\Gamma_{I}(s)$ are defined in terms of Γ -function.
- $\varepsilon \in \{z \in \mathbb{C} : |z| = 1\}$ is the root number
- N is the conductor of L(s),
- $w \in \mathbb{N}$ is the (motivic) weight of L(s).

• Characters χ associated to a number field F give us an L-function of degree $[F:\mathbb{Q}]$ and motivic weight 0

- Characters χ associated to a number field F give us an L-function of degree $[F:\mathbb{Q}]$ and motivic weight 0
- Artin representations associated to a Galois number field F give us an L-function of degree at most $[F:\mathbb{Q}]$ and motivic weight 0

- Characters χ associated to a number field F give us an L-function of degree $[F:\mathbb{Q}]$ and motivic weight 0
- Artin representations associated to a Galois number field F give us an L-function of degree at most $[F:\mathbb{Q}]$ and motivic weight 0
- Classical modular forms $f = \sum_{n>0} a_n q^n$ of weight k give us an L-function of degree degree $2[\mathbb{Q}(a_n):\mathbb{Q}]$, motivic weight k-1, and conductor $N^{[\mathbb{Q}(a_n):\mathbb{Q}]}$.

- Classical modular forms $f = \sum_{n>0} a_n q^n$ of weight k give us an L-function of degree degree $2[\mathbb{Q}(a_n):\mathbb{Q}]$, motivic weight k-1, and conductor $N^{[\mathbb{Q}(a_n):\mathbb{Q}]}$.
- Elliptic curves gives us degree 2 L-functions with motivic weight 1

$$F_p(t) = 1 - a_p t + p t^2, \quad a_p := p + 1 - \#E(\mathbb{F}_p)$$

· In general, for a projective variety X, we can associate an L-function to $H^n(X)$

$$F_p(t) = \det(1 - t \operatorname{Frob} | H_{\operatorname{et}}^n(X)).$$

This gives an L-function of degree $\dim H^n(X)$ and motivic weight n. Note that by Lefschetz fixed-point theorem, we have

$$\exp\left(\sum_{m=1}^{\infty}\frac{\#X(\mathbb{F}_{p^m})}{m}t^m\right)=\prod_{i}\det(1-t\operatorname{Frob}|H^n_{\operatorname{et}}(X))^{(-1)^{i+1}}$$

Computing the Dirichlet series

For several applications (special values, zeros, statistics, \cdots) one desires to compute an approximation by truncating the Dirichlet series $\sum_{n \leq B} a_n n^{-s}$. Depending on the application B we may want $B = O(\sqrt{N})$, O(N), or simply O(1).

Computing the Dirichlet series

For several applications (special values, zeros, statistics, \cdots) one desires to compute an approximation by truncating the Dirichlet series $\sum_{n \leq B} a_n n^{-s}$. Depending on the application B we may want $B = O(\sqrt{N})$, O(N), or simply O(1).

Theorem [Harvey]

One can compute

$$\exp\left(\sum_{m=1}^{\infty} \frac{\#X(\mathbb{F}_{p^m})}{m} t^m\right) = \prod_{i} \det(1 - t \operatorname{Frob}|H_{\operatorname{et}}^n(X))^{(-1)^{i+1}}$$

for all primes p < B in $B(\log B)^{3+o(1)}$.

Computing the Dirichlet series

For several applications (special values, zeros, statistics, \cdots) one desires to compute an approximation by truncating the Dirichlet series $\sum_{n \leq B} a_n n^{-s}$. Depending on the application B we may want $B = O(\sqrt{N})$, O(N), or simply O(1).

Theorem [Harvey]

One can compute

$$\exp\left(\sum_{m=1}^{\infty}\frac{\#X(\mathbb{F}_{p^m})}{m}t^m\right)=\prod_{i}\det(1-t\operatorname{Frob}|H^n_{\operatorname{et}}(X))^{(-1)^{i+1}}$$

for all primes p < B in $B(\log B)^{3+o(1)}$.

In other words, we can compute $F_p(t)$ on average in $(\log p)^{4+o(1)}$. Unfortunately, the constants involved make it unpractical without further specialization.

Computing Dirichlet series

Goal

Compute $F_p(t)$ for all primes p < B in $B(\log B)^{3+o(1)}$.

In other words, we can compute $F_p(t)$ on average in $(\log p)^{4+o(1)}$.

There are several classes of *L*-functions for which we can do better:

- Dirichlet/Hecke characters
- Artin representations
- Elliptic curves

Computing Dirichlet series

Goal

Compute $F_p(t)$ for all primes p < B in $B(\log B)^{3+o(1)}$.

In other words, we can compute $F_p(t)$ on average in $(\log p)^{4+o(1)}$.

There are several classes of *L*-functions for which we can do better:

- · Dirichlet/Hecke characters
- Artin representations
- Elliptic curves

We do not need the full Euler factor $F_p(t)$ for most p.

For example, $F_p(t) \mod t^2$ is sufficient for all $p \in [B^{1/2}, B]$.

 $X: y^2 = f(x, z)$, with $f \in \mathbb{Z}[x, y]$ a homogeneous polynomial of degree 2g + 2. X is an hyperelliptic curve of genus g.

$$\#X(\mathbb{F}_p) = \sum_{t \in \mathbb{P}^1(\mathbb{F}_p)} \left[\left(\frac{f(t)}{p} \right) + 1 \right]$$

 $X: y^2 = f(x, z)$, with $f \in \mathbb{Z}[x, y]$ a homogeneous polynomial of degree 2g + 2. X is an hyperelliptic curve of genus g.

$$\#X(\mathbb{F}_p) = \sum_{t \in \mathbb{P}^1(\mathbb{F}_p)} \left[\left(\frac{f(t)}{p} \right) + 1 \right] \equiv 1 + \sum_{t \in \mathbb{P}^1(\mathbb{F}_p)} f(t)^{(p-1)/2} \equiv 1 - \sum_{i=1}^g f_{(p-1)i}^{(p-1)/2} \pmod{p},$$

where f_i^k is the coefficient of x^i in $f(x, 1)^k$.

 $X: y^2 = f(x, z)$, with $f \in \mathbb{Z}[x, y]$ a homogeneous polynomial of degree 2g + 2. X is an hyperelliptic curve of genus g.

$$\#X(\mathbb{F}_p) = \sum_{t \in \mathbb{P}^1(\mathbb{F}_p)} \left[\left(\frac{f(t)}{p} \right) + 1 \right] \equiv 1 + \sum_{t \in \mathbb{P}^1(\mathbb{F}_p)} f(t)^{(p-1)/2} \equiv 1 - \sum_{i=1}^g f_{(p-1)i}^{(p-1)/2} \pmod{p},$$

where f_i^k is the coefficient of x^i in $f(x, 1)^k$.

Therefore, we may compute $\#X(\mathbb{F}_p)$ by computing g coefficients of $f^{(p-1)/2}$

 $X: y^2 = f(x, z)$, with $f \in \mathbb{Z}[x, y]$ a homogeneous polynomial of degree 2g + 2. X is an hyperelliptic curve of genus g.

$$\#X(\mathbb{F}_p) = \sum_{t \in \mathbb{P}^1(\mathbb{F}_p)} \left[\left(\frac{f(t)}{p} \right) + 1 \right] \equiv 1 + \sum_{t \in \mathbb{P}^1(\mathbb{F}_p)} f(t)^{(p-1)/2} \equiv 1 - \sum_{i=1}^g f_{(p-1)i}^{(p-1)/2} \pmod{p},$$

where f_i^k is the coefficient of x^i in $f(x, 1)^k$.

Therefore, we may compute $\#X(\mathbb{F}_p)$ by computing g coefficients of $f^{(p-1)/2}$.

Each of the desired coefficients may be obtained via a matrix-vector product

$$v \cdot A(1) \cdots A(\frac{p-1}{2}) \mod p$$
, where $A(x) \in M_{2g+2}(\mathbb{Z}[x])$.

 $X: y^2 = f(x, z)$, with $f \in \mathbb{Z}[x, y]$ a homogeneous polynomial of degree 2g + 2. X is an hyperelliptic curve of genus g.

$$\#X(\mathbb{F}_p) = \sum_{t \in \mathbb{P}^1(\mathbb{F}_p)} \left[\left(\frac{f(t)}{p} \right) + 1 \right] \equiv 1 + \sum_{t \in \mathbb{P}^1(\mathbb{F}_p)} f(t)^{(p-1)/2} \equiv 1 - \sum_{i=1}^g f_{(p-1)i}^{(p-1)/2} \pmod{p},$$

where f_i^k is the coefficient of x^i in $f(x, 1)^k$.

Therefore, we may compute $\#X(\mathbb{F}_p)$ by computing g coefficients of $f^{(p-1)/2}$.

Each of the desired coefficients may be obtained via a matrix-vector product

$$v \cdot A(1) \cdots A(\frac{p-1}{2}) \mod p$$
, where $A(x) \in M_{2g+2}(\mathbb{Z}[x])$.

One can amortize these products by taking advantage of the redundancies. This leads to an algorithm to compute a_D for p < B in $B(\log B)^{3+o(1)}$ time.

These techniques have lead to several practical algorithms:

• Wilson primes search: $(p-1)! \mod p^2$ [C-Gerbicz-Harvey]

These techniques have lead to several practical algorithms:

- Wilson primes search: $(p-1)! \mod p^2$ [C-Gerbicz-Harvey]
- L-functions of hyperelliptic curves $y^2 = f(x) : v \cdot A(1) \cdots A(\frac{p-1}{2}) \mod p$ [Harvey, Harvey–Sutherland², Harvey–Massierer–Sutherland]

These techniques have lead to several practical algorithms:

- Wilson primes search: $(p-1)! \mod p^2$ [C-Gerbicz-Harvey]
- L-functions of hyperelliptic curves $y^2 = f(x) : v \cdot A(1) \cdots A(\frac{p-1}{2}) \mod p$ [Harvey, Harvey–Sutherland², Harvey–Massierer–Sutherland]
- L-functions of superelliptic curves $y^r = f(x)$: $v \cdot A(1) \cdots A(\frac{p-\bullet}{r}) \mod p$ [Sutherland]

These techniques have lead to several practical algorithms:

- Wilson primes search: $(p-1)! \mod p^2$ [C-Gerbicz-Harvey]
- L-functions of hyperelliptic curves $y^2 = f(x) : v \cdot A(1) \cdots A(\frac{p-1}{2}) \mod p$ [Harvey, Harvey–Sutherland², Harvey–Massierer–Sutherland]
- L-functions of superelliptic curves $y^r = f(x)$: $v \cdot A(1) \cdots A(\frac{p-\bullet}{r}) \mod p$ [Sutherland]
- L-functions of smooth plane quartics: $v \cdot A(1) \cdots A(p-1) \mod p$ [C-Harvey-Sutherland]

These techniques have lead to several practical algorithms:

- Wilson primes search: $(p-1)! \mod p^2$ [C-Gerbicz-Harvey]
- L-functions of hyperelliptic curves $y^2 = f(x) : v \cdot A(1) \cdots A(\frac{p-1}{2}) \mod p$ [Harvey, Harvey–Sutherland², Harvey–Massierer–Sutherland]
- L-functions of superelliptic curves $y^r = f(x)$: $v \cdot A(1) \cdots A(\frac{p-\bullet}{r}) \mod p$ [Sutherland]
- L-functions of smooth plane quartics: $v \cdot A(1) \cdots A(p-1) \mod p$ [C-Harvey-Sutherland]
- · L-functions of Hypergeometric motives: $\sum_{m=0}^{p-1} \frac{(\alpha)_m}{(\beta)_m} z^m$ [C-Kedlaya-Roe²]

All these algorithms have a *p*-adic flavor.

p-adic algorithms for *L*-functions

Given a projective variety X, we can associate an L-function to $H^n(X)$ via

$$F_p(t) = \det(1 - t \operatorname{Frob} | H_{\operatorname{et}}^n(X, \mathbb{Z}_\ell)) \in \mathbb{Z}[X].$$

One approach to compute F_p , is to compute $F_p(t) \mod \ell$ for several ℓ . This is only practical if there is a nice description of $H^n_{\text{et}}(X, \mathbb{Z}_\ell)$), e.g., Tate modules.

p-adic algorithms for L-functions

Given a projective variety X, we can associate an L-function to $H^n(X)$ via

$$F_p(t) = \det(1 - t \operatorname{Frob} | H_{\operatorname{et}}^n(X, \mathbb{Z}_\ell)) \in \mathbb{Z}[X].$$

One approach to compute F_p , is to compute $F_p(t) \mod \ell$ for several ℓ . This is only practical if there is a nice description of $H^n_{\text{et}}(X, \mathbb{Z}_\ell)$), e.g., Tate modules.

Alternatively, one may replace $H^n_{\mathrm{et}}(X,\mathbb{Z}_\ell)$ with a p-adic cohomology theory, i.e., a cohomology theory with coefficients in \mathbb{Q}_p , e.g.,

$$F_p(t) = \det(1 - t \operatorname{Frob} | H_{\operatorname{rig}}^n(X)) \in \mathbb{Z}[X].$$

and compute a *p*-adic approximation of the matrix representing Frob.

p-adic algorithms for *L*-functions

Given a projective variety X, we can associate an L-function to $H^n(X)$ via

$$F_p(t) = \det(1 - t \operatorname{Frob} | H_{\operatorname{et}}^n(X, \mathbb{Z}_\ell)) \in \mathbb{Z}[X].$$

One approach to compute F_p , is to compute $F_p(t) \mod \ell$ for several ℓ . This is only practical if there is a nice description of $H^n_{\text{et}}(X, \mathbb{Z}_\ell)$), e.g., Tate modules.

Alternatively, one may replace $H^n_{\mathrm{et}}(X,\mathbb{Z}_\ell)$ with a p-adic cohomology theory, i.e., a cohomology theory with coefficients in \mathbb{Q}_p , e.g.,

$$F_p(t) = \det(1 - t \operatorname{Frob} | H_{\operatorname{rig}}^n(X)) \in \mathbb{Z}[X].$$

and compute a *p*-adic approximation of the matrix representing Frob.

If X is an hypersurface, Monsky–Washnitzer cohomology provides a nice description for the primitive cohomology of X $PH^{\dagger,n}(X)$ in terms of de Rham cohomology with overconvergent power series.

Goal

Goal

Goal

Goal

Goal

Compute the matrix representing the action of Frob in $PH^{\dagger,n}(X)$ with enough p-adic precision.

cohomology relations basis for $PH^{n-1}_{\mathrm{dR}}(X_{\mathbb{Q}_p})$ + \Rightarrow + reduction algorithm

L-functions of hypersurfaces in a toric variety

Theorem [C-Harvey-Kedlaya]

Given a polynomial $f = \sum_{\alpha \in \mathbb{Z}^{n+1}} c_{\alpha} x^{\alpha} \in \mathbb{F}_p[x_1^{\pm}, \dots, x_n^{\pm}]$ defining nondegenerate

hypersurface V(f) in a toric variety \mathbb{P}_{Δ} one can compute

$$\det(1-t\operatorname{Frob}|PH^n_{\operatorname{rig}}(X))\in\mathbb{Z}[x]$$

in $p^{1+o(1)} \operatorname{vol}(\Delta)^{O(n)}$ time.

To compute a_n for $n \le B$, this leads to a $B^{2+o(1)}$ algorithm.

Theorem [C-Harvey-Kedlaya]

Given a polynomial $f = \sum_{\alpha \in \mathbb{Z}^{n+1}} c_{\alpha} x^{\alpha} \in \mathbb{F}_p[x_1^{\pm}, \dots, x_n^{\pm}]$ defining nondegenerate

hypersurface V(f) in a toric variety \mathbb{P}_{Λ} one can compute

$$\det(1 - t \operatorname{Frob} | PH_{\operatorname{rig}}^n(X)) \in \mathbb{Z}[X]$$

in $p^{1+o(1)} \operatorname{vol}(\Delta)^{O(n)}$ time.

To compute a_n for $n \le B$, this leads to a $B^{2+o(1)}$ algorithm. Implementation

- Projective hypersurfaces:
 - C++ library: github.com/edgarcosta/controlledreduction
 Sage wrapper: github.com/edgarcosta/pycontrolledreduction
- · Toric hypersurfaces:
- C++ library: github.com/edgarcosta/ToricControlledReduction

Theorem [C-Harvey-Kedlaya]

Given a polynomial $f = \sum_{\alpha \in \mathbb{Z}^{n+1}} c_{\alpha} x^{\alpha} \in \mathbb{F}_p[x_1^{\pm}, \dots, x_n^{\pm}]$ defining nondegenerate

hypersurface V(f) in a toric variety \mathbb{P}_{Δ} one can compute

$$\det(1-t\operatorname{Frob}|PH^n_{\operatorname{rig}}(X))\in\mathbb{Z}[x]$$

in $p^{1+o(1)} \operatorname{vol}(\Delta)^{O(n)}$ time.

Theorem [C-Harvey-Kedlaya]

Given a polynomial $f = \sum_{\alpha \in \mathbb{Z}^{n+1}} c_{\alpha} x^{\alpha} \in \mathbb{F}_p[x_1^{\pm}, \dots, x_n^{\pm}]$ defining nondegenerate

hypersurface V(f) in a toric variety \mathbb{P}_{Δ} one can compute

$$\det(1-t\operatorname{Frob}|PH^n_{\operatorname{rig}}(X))\in\mathbb{Z}[x]$$

in $p^{1+o(1)} \operatorname{vol}(\Delta)^{O(n)}$ time.

To compute a_n for $n \le B$, this leads to a $B^{2+o(1)}$ algorithm.

Fits well in the remainder tree algorithm infrastructure, so in theory, can reduce the average time complexity for each prime to

$$\log(N)^{4+o(1)}\operatorname{vol}(\Delta)^{O(n)}.$$

Theorem [C-Harvey-Kedlaya]

Given a polynomial $f = \sum_{\alpha \in \mathbb{Z}^{n+1}} c_{\alpha} x^{\alpha} \in \mathbb{F}_p[x_1^{\pm}, \dots, x_n^{\pm}]$ defining nondegenerate

hypersurface V(f) in a toric variety \mathbb{P}_{Δ} one can compute

$$\det(1-t\operatorname{Frob}|PH^n_{\operatorname{rig}}(X))\in\mathbb{Z}[x]$$

in $p^{1+o(1)} \operatorname{vol}(\Delta)^{O(n)}$ time.

Implementations:

- Projective hypersurfaces:
- C++ library: github.com/edgarcosta/controlledreduction
 Sage wrapper: github.com/edgarcosta/pycontrolledreduction
- Toric hypersurfaces:
- C++ library: github.com/edgarcosta/ToricControlledReduction

K3 surfaces

Naturally arise as hypersurfaces in 95 weighted projective spaces.

• smooth quartic surface in \mathbb{P}^3

$$X: f(x, y, z, w) = 0, \deg f = 4$$

• double cover of \mathbb{P}^2 branched over a sextic curve $\mathbb{P}(3,1,1,1)$

$$X: W^2 = f(x, y, z), \quad \deg f = 6$$

K3 surfaces

Naturally arise as hypersurfaces in 95 weighted projective spaces.

• smooth quartic surface in \mathbb{P}^3

$$X: f(x, y, z, w) = 0, \deg f = 4$$

• double cover of \mathbb{P}^2 branched over a sextic curve $\mathbb{P}(3,1,1,1)$

$$X: W^2 = f(x, y, z), \quad \deg f = 6$$

$$\operatorname{Pic}(X^{\operatorname{al}}) \simeq H^{1,1}(X) \cap H^2(X, \mathbb{Z}) \subsetneq H^2(X, \mathbb{Z}) \simeq (-E_8)^2 \oplus U^3 \simeq \mathbb{Z}^{22}$$

$$H^2(X, \mathbb{Q}) \simeq \operatorname{Pic}(X^{\operatorname{al}})_{\mathbb{Q}} \oplus T(X)_{\mathbb{Q}}$$

The *L*-functions associated to $Pic(X^{al})$ are associated to Artin representations. New and interesting *L*-functions arise from T(X).

If X is an hypersurface in a toric variety \mathbb{P}_{Δ} , then $\operatorname{rk}\operatorname{Pic}X^{\operatorname{al}}\geq\operatorname{rk}\operatorname{Pic}X_{\Delta}$.

Example: K3 surface in the Dwork pencil

Consider the projective quartic surface X in $\mathbb{P}^3_{\mathbb{F}_p}$ given by

$$x^4 + y^4 + z^4 + w^4 + \lambda xyzw = 0.$$

For $\lambda = 1$ and $p = 2^{20} - 3$, using the old projective code in 3h36m we compute that

$$\zeta_X(t)^{-1} = (1-t)(1-pt)^{16}(1+pt)^3(1-p^2t)Q(t),$$

where the "interesting" factor is

$$Q(t) = (1 + pt)(1 - 1688538t + p^2t^2).$$

The polynomials R_1 and R_2 arise from the action of Frobenius on the Picard lattice; by a p-adic formula of de la Ossa–Kadir.

Q(t) can be interpreted as an Euler factor of $\operatorname{Sym}^2 E$.

Example: a quartic surface in the Dwork pencil

Consider the projective quartic surface X in $\mathbb{P}^3_{\mathbb{F}_n}$ given by

$$x^4 + y^4 + z^4 + w^4 + \lambda xyzw = 0.$$

For $\lambda=1$ and $p=2^{20}-3$, using the toric old projective code in **37s** 3h36m we compute

$$\zeta_X(t)^{-1} = (1-t)(1-pt)^{16}(1+pt)^3(1-p^2t)(1+pt)(1-1688538t+p^2t^2).$$

Example: a quartic surface in the Dwork pencil

Consider the projective quartic surface X in $\mathbb{P}^3_{\mathbb{F}_n}$ given by

$$x^4 + y^4 + z^4 + w^4 + \lambda xyzw = 0.$$

For $\lambda=1$ and $p=2^{20}-3$, using the toric old projective code in **37s** 3h36m we compute

$$\zeta_X(t)^{-1} = (1-t)(1-pt)^{16}(1+pt)^3(1-p^2t)(1+pt)(1-1688538t+p^2t^2).$$

The defining monomials of X generate a sublattice of index 4^2 in \mathbb{Z}^3 , and we can work "in" that sublattice, by using

$$x^4y^{-1}z^{-1} + \lambda x + y + z + 1 = 0$$

which has a polytope much smaller than the full simplex (32/3 \approx 10.6 vs 2/3 \approx 0.6).

Example: a hypergeometric motive (also a K3 surface)

Consider the appropriate completion of the toric surface over \mathbb{F}_p with $p=2^{15}-19$ given by

$$x^3y + y^4 + z^4 - 12xyz + 1 = 0.$$

In 1.3s, we compute that the "interesting" factor of $\zeta_X(t)$ is (up to rescaling)

$$pQ(t/p) = p + 20508t^{1} - 18468t^{2} - 26378t^{3} - 18468t^{4} + 20508t^{5} + pt^{6}.$$

In \mathbb{P}^3 this surface is degenerate, and would have taken us 13m26s to do the same computation with a dense model.

Example: a hypergeometric motive (also a K3 surface)

Consider the appropriate completion of the toric surface over \mathbb{F}_p with $p=2^{15}-19$ given by

$$x^3y + y^4 + z^4 - 12xyz + 1 = 0.$$

In 1.3s, we compute

that the "interesting" factor of $\zeta_X(t)$ is (up to rescaling)

$$pQ(t/p) = p + 20508t^{1} - 18468t^{2} - 26378t^{3} - 18468t^{4} + 20508t^{5} + pt^{6}.$$

In \mathbb{P}^3 this surface is degenerate, and would have taken us 13m26s to do the same computation with a dense model.

We can confirm the linear term with Magma:

C2F2 := HypergeometricData([6,12], [1,1,1,2,3]); EulerFactor(C2F2, 2^10 * 3^6, 2^15-19: Degree:=1); 1 + 20508*\$.1 + O(\$.1^2)

Example: a hypergeometric motive (also a K3 surface)

Consider the appropriate completion of the toric surface over \mathbb{F}_p with $p=2^{15}-19$ given by

$$x^3y + y^4 + z^4 - 12xyz + 1 = 0.$$

In 1.3s, we compute that the "interesting" factor of $\zeta_X(t)$ is (up to rescaling)

$$pQ(t/p) = p + 20508t^{1} - 18468t^{2} - 26378t^{3} - 18468t^{4} + 20508t^{5} + pt^{6}.$$

In \mathbb{P}^3 this surface is degenerate, and would have taken us 13m26s to do the same computation with a dense model.

We can compute all the a_p for $p \le 2^{18}$ in 4s H = AmortizingHypergeometricData(cyclotomic=[[6,12],[1,1,1,2,3]])

time aps = H.amortized_padic_H_values(1/(2^10*3^6), 2^18)

user 4.01 s, sys: 15.9 ms, total: 4.02 s

Example: a K3 surface in a non weighted projective space

Consider the surface X defined as the closure (in \mathbb{P}_{Δ}) of the affine surface defined by the Laurent polynomial

$$3x + y + z + x^{-2}y^{2}z + x^{3}y^{-6}z^{-2} + 3x^{-2}y^{-1}z^{-2} - 2 - x^{-1}y - y^{-1}z^{-1} - x^{2}y^{-4}z^{-1} - xy^{-3}z^{-1}.$$

The Hodge numbers of $PH^2(X)$ are (1, 14, 1). For $p=2^{15}-19$, in **2m14s** we obtain the "interesting" factor of $\zeta_X(t)$:

$$pQ(t/p) = (1-t) \cdot (1+t) \cdot (p+33305t^{1}+1564t^{2}-14296t^{3}-11865t^{4} + 5107t^{5} + 27955t^{6} + 25963t^{7} + 27955t^{8} + 5107t^{9} - 11865t^{10} - 14296t^{11} + 1564t^{12} + 33305t^{13} + pt^{14}).$$

We know of no previous algorithm that can compute $\zeta_X(t)$ for p in this range!

Example: random dense K3 surface

$$\begin{split} X \subset \mathbb{P}^3_{\mathbb{F}_p} \text{ given by} \\ -9x^4 - 10x^3y - 9x^2y^2 + 2xy^3 - 7y^4 + 6x^3z + 9x^2yz - 2xy^2z + 3y^3z \\ +8x^2z^2 + 6y^2z^2 + 2xz^3 + 7yz^3 + 9z^4 + 8x^3w + x^2yw - 8xy^2w - 7y^3w \\ +9x^2zw - 9xyzw + 3y^2zw - xz^2w - 3yz^2w + z^3w - x^2w^2 - 4xyw^2 \\ -3xzw^2 + 8yzw^2 - 6z^2w^2 + 4xw^3 + 3yw^3 + 4zw^3 - 5w^4 = 0 \end{split}$$

For $p = 2^{15} - 19$, in **38m27s**, we obtain

$$\zeta_X(t) = ((1-t)(1-pt)(1-p^2t)Q(t))^{-1}$$

where

$$pQ(t/p) = (t+1)(p-53159t^{1} + 10023t^{2} - 3204t^{3} + 49736t^{4} - 56338t^{5}$$

$$+ 43086t^{6} - 48180t^{7} + 44512t^{8} - 42681t^{9} + 47794t^{10}$$

$$- 42681t^{11} + 44512t^{12} - 48180t^{13} + 43086t^{14} - 56338t^{15}$$

$$+ 49736t^{16} - 3204t^{17} + 10023t^{18} - 53159t^{19} + pt^{20})$$

Example: a quintic threefold in the Dwork pencil

Consider the threefold X in $\mathbb{P}_{\mathbb{F}_p}^4$ for $p=2^{20}-3$ given by

$$x_0^5 + \cdots + x_4^5 + x_0 x_1 x_2 x_3 x_5 = 0.$$

In 5m48s, we compute that

$$\zeta_X(t) = \frac{R_1(pt)^{20}R_2(pt)^{30}S(t)}{(1-t)(1-pt)(1-p^2t)(1-p^3t)}$$

where the "interesting" factor is

$$S(t) = 1 + 74132440T + 748796652370pT^{2} + 74132440p^{3}T^{3} + p^{6}T^{4}.$$

and R_1 and R_2 are the numerators of the zeta functions of certain curves (given by a formula of Candelas–de la Ossa–Rodriguez Villegas).

Using the old projective code, we extrapolate it would have taken us at least 120 days.

Example: a Calabi–Yau 3fold in a non weighted projective space

Let X be the closure (in \mathbb{P}_{Δ}) of the affine threefold

$$xyz^2w^3 + x + y + z - 1 + y^{-1}z^{-1} + x^{-2}y^{-1}z^{-2}w^{-3} = 0.$$

For $p=2^{20}-3$, in 42m, we computed the "interesting" factor of $\zeta_X(t)$

$$(1+718pt+p^3t^2)(1+1188466826t+1915150034310pt^2+1188466826p^3t^3+p^6t^4).$$

Example: a Calabi–Yau 3fold in a non weighted projective space

Let X be the closure (in \mathbb{P}_{Δ}) of the affine threefold

$$xyz^2w^3 + x + y + z - 1 + y^{-1}z^{-1} + x^{-2}y^{-1}z^{-2}w^{-3} = 0.$$

For $p=2^{20}-3$, in 42m, we computed the "interesting" factor of $\zeta_X(t)$

$$(1+718pt+p^3t^2)(1+1188466826t+1915150034310pt^2+1188466826p^3t^3+p^6t^4).$$

Calabi–Yau threefolds can arise as hypersurfaces in:

- 7555 weighted projective spaces;
- 473,800,776 toric varieties.

See http://hep.itp.tuwien.ac.at/~kreuzer/CY/.