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Riemann zeta function: the prototypical L-function
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Riemann zeta function: the prototypical L-function
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Used by Chebyshev to study the distribution of primes.
The formula above works for x > 1, e.g, ¢(2) = >, iz = 72 /6.

Riemann was the first to consider it as a complex function and showed it has
meromorphic continuation to C.



Riemann zeta function functional equation
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Functional equation relates s <+ 1—5s
¢(s) =T¢(s)¢(1—5)

s=-2nneN
0 <R(s) <1

Riemann showed ¢(s) = 0 {

Riemann hypothesis
¢(s)=0and 0 < R(s) <1= R(s) =1/2

One of the Millennium Prize Problems.
The roots ((s) describe the distribution of the primes.



Comparison by Zagier (1977)
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Rational L-functions
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Rational L-functions

+ Euler products L(s) = [], Fp(p~)~" with
Fo(t) =1—apt+--- € Z[t] and deg F,(t) < d

- = Dirichlet series
L(s) = ann™ where aym = anap if ged(n,m) =1
n>1
Enough to know aps to deduce the rest, for p a prime number.
- Functional equation

A(s) == NS/2T(s) - L(s) = eN((1 + w) — s),

- T'(s) are defined in terms of [-function.
- ee€{zeC:|z| =1} is the root number
- N is the conductor of L(s),

- w € N is the (motivic) weight of L(s).
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Sources of L-functions

- Classical modular forms f = 3" ., asq" of weight k give us an L-function of
degree degree 2[Q(ay) : Q], motivic weight k — 1, and conductor NIQ(@):Q]
- Elliptic curves gives us degree 2 L-functions with motivic weight 1

Fo(t) =1—apt +pt?, ap:=p+1—#E(Fp)

- In general, for a projective variety X, we can associate an L-function to H"(X)
Fp(t) = det(1 — t Frob |HJ,(X)).

This gives an L-function of degree dim H"(X) and motivic weight n.
Note that by Lefschetz fixed-point theorem, we have

exp <Z #X(j"m)tm> = [ [ det(1 — t Frob IHM (X))

m=1



Computing the Dirichlet series

For several applications (special values, zeros, statistics, - - -) one desires to
compute an approximation by truncating the Dirichlet series 3, g ann=>.
Depending on the application B we may want B = O(v/N), O(N), or simply O(1).
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Computing the Dirichlet series

For several applications (special values, zeros, statistics, - - -) one desires to
compute an approximation by truncating the Dirichlet series 3, g ann=>.
Depending on the application B we may want B = O(v/N), O(N), or simply O(1).
Theorem [Harvey]

One can compute

exp (Z #X(]Fpm)tm> = Hdet(1 — tFrob |H, (X)) D™

m
m=1
for all primes p < B in B(log B)>*+°(").

In other words, we can compute F,(t) on average in (log p)“+o().
Unfortunately, the constants involved make it unpractical without further
specialization.
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Compute Fp(t) for all primes p < B in B(log B)**+°(").

In other words, we can compute F,(t) on average in (log p)“+o().
There are several classes of L-functions for which we can do better:
- Dirichlet/Hecke characters

- Artin representations

- Elliptic curves



Computing Dirichlet series

Goal
Compute Fp(t) for all primes p < B in B(log B)**+°(").

In other words, we can compute F,(t) on average in (log p)“+o().
There are several classes of L-functions for which we can do better:
- Dirichlet/Hecke characters

- Artin representations

- Elliptic curves

We do not need the full Euler factor Fp(t) for most p.
For example, Fp(t) mod t? is sufficient for all p € [B'/?, B].



Example: Remainder tree for Hyperelliptic curves

X: y? = f(x,2), with f € Z[x,y] a homogeneous polynomial of degree 2g + 2.
X is an hyperelliptic curve of genus g.

wea= 3 (1)1

teP'(Fp)



Example: Remainder tree for Hyperelliptic curves

X: y? = f(x,2), with f € Z[x,y] a homogeneous polynomial of degree 2g + 2.
X is an hyperelliptic curve of genus g.

_ (1) FY(P=1)/2 =
#X(Fp) = +1| =1+ f g =) f (mod p),
2= 3 ()] =+ 3 roere=-i,

where fF is the coefficient of X' in f(x, 1)*.
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Example: Remainder tree for Hyperelliptic curves

X: y? = f(x,2), with f € Z[x,y] a homogeneous polynomial of degree 2g + 2.
X is an hyperelliptic curve of genus g.

#X(Fp) = > [(fff)> +1] =1+ > fP V=1 Zf(” 3/ (mod p),
teP' (Fp) teP!(Fp)

where fi’? is the coefficient of x' in f(x, ).

Therefore, we may compute #X(Fp) by computing g coefficients of f(P=1)/2

Each of the desired coefficients may be obtained via a matrix-vector product

v-AQ1)--A(BSY) mod p, where A(x) € Mag12(Z[X]).

One can amortize these products by taking advantage of the redundancies.
This leads to an algorithm to compute a, for p < B in B(log B)*+°() time.
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L-functions via remainder tree algorithms

These techniques have lead to several practical algorithms:

- Wilson primes search: (p — 1)! mod p? [C-Gerbicz-Harvey]

- L-functions of hyperelliptic curves y? = f(x) : v-A(1) - - -A(DT’“) mod p
[Harvey, Harvey-Sutherland?, Harvey-Massierer-Sutherland|]

+ L-functions of superelliptic curves y" = f(x): v - A(1) - - -A(2*) mod p
[Sutherland]

- L-functions of smooth plane quartics: v-A(1)---A(p — 1) mod p
[C-Harvey-Sutherland]

- L-functions of Hypergeometric motives: anjo Egg:zm [C-Kedlaya—Roe?]

All these algorithms have a p-adic flavor.



p-adic algorithms for L-functions

Given a projective variety X, we can associate an L-function to H"(X) via
Fp(t) = det(1 — t Frob [HZ (X, Z¢)) € Z[X].

One approach to compute Fp, is to compute Fp(t) mod ¢ for several £. This is only
practical if there is a nice description of H, (X, Z¢)), e.g., Tate modules.



p-adic algorithms for L-functions

Given a projective variety X, we can associate an L-function to H"(X) via
Fp(t) = det(1 — t Frob [HZ (X, Z¢)) € Z[X].

One approach to compute Fp, is to compute Fp(t) mod ¢ for several £. This is only
practical if there is a nice description of H, (X, Z¢)), e.g., Tate modules.

Alternatively, one may replace HJ (X, Z,) with a p-adic cohomology theory, i.e., a
cohomology theory with coefficients in Qp, e.g,

Fo(t) = det(1 — t Frob |HI,(X)) € ZIX].

and compute a p-adic approximation of the matrix representing Frob.



p-adic algorithms for L-functions

Given a projective variety X, we can associate an L-function to H"(X) via
Fp(t) = det(1 — t Frob [HZ (X, Z¢)) € Z[X].

One approach to compute Fp, is to compute Fp(t) mod ¢ for several £. This is only
practical if there is a nice description of H, (X, Z¢)), e.g., Tate modules.

Alternatively, one may replace HJ (X, Z,) with a p-adic cohomology theory, i.e., a
cohomology theory with coefficients in Qp, e.g,

Fo(t) = det(1 — t Frob |HI,(X)) € ZIX].

and compute a p-adic approximation of the matrix representing Frob.
If X is an hypersurface, Monsky-Washnitzer cohomology provides a nice

description for the primitive cohomology of X PH"(X) in terms of de Rham
cohomology with overconvergent power series.



Overall picture

Goal

Compute the matrix representing the action of Frob in PH"(X) with enough
p-adic precision.



Overall picture

Goal
Compute the matrix representing the action of Frob in PH"(X) with enough
p-adic precision.

Frob

(Y
PHO(XQ,) - PHT=Y(X)




Overall picture

Goal
Compute the matrix representing the action of Frob in PH"(X) with enough
p-adic precision.

Frob

-
PHT:N=T(X)

PHI(Xg,)
|
|

\]
explicit description over C
[Dwork-Griffiths, Batyrev—-Cox]



Overall picture

Goal

Compute the matrix representing the action of Frob in PH"(X) with enough
p-adic precision.

Frob
1 (Y
PHI: ' (Xg,) - PHTv”‘*W(X)
I
I I
. . v. . V
explicit description over C de Rham cohomology

[Dwork-Griffiths, Batyrev-Cox] with overconvergent power series



Overall picture

Goal

Compute the matrix representing the action of Frob in PH"(X) with enough
p-adic precision.

Frob
1 Y
PHI: ' (Xg,) - PHTv”‘*W(X)
I
\ \
. . V. . V
explicit description over C de Rham cohomology
[Dwork-Griffiths, Batyrev-Cox] with overconvergent power series
cohomology relations basis for PHQ?(X@[))
+ — +

commutative algebra reduction algorithm



L-functions of hypersurfaces in a toric variety

Theorem [C-Harvey-Kedlayal]

Given a polynomial f = > cax* € Fp[xf,..., X3 ] defining nondegenerate
an/’l+T
hypersurface V(f) in a toric variety PA one can compute

det(1 — t Frob |PH{4(X)) € Z[X]
in p1o( vol(A)9( time.

To compute a, for n < B, this leads to a B2°() algorithm.
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L-functions of hypersurfaces in a toric variety

Theorem [C-Harvey-Kedlayal]

Given a polynomial f = > cax* € Fp[xf,..., X3 ] defining nondegenerate
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hypersurface V(f) in a toric variety PA one can compute

det(1 — t Frob |PH{4(X)) € Z[X]
in p1o( vol(A)9( time.

To compute a, for n < B, this leads to a B2°(" algorithm. Implementation
Projective hypersurfaces

C++ library: github.com/edgarcosta/controlledreduction
Sage wrapper: github.com/edgarcosta/pycontrolledreduction

- Toric hypersurfaces:
C++ library: github.com/edgarcosta/ToricControlledReduction
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L-functions of hypersurfaces in a toric variety

Theorem [C-Harvey-Kedlayal]

Given a polynomial f = > cax* € Fp[xf,..., X3 ] defining nondegenerate
an/’l+'\
hypersurface V(f) in a toric variety PA one can compute

det(1 — t Frob |PH{4(X)) € Z[X]

in p1o( vol(A)9( time.

To compute a, for n < B, this leads to a B2°() algorithm.

Fits well in the remainder tree algorithm infrastructure, so in theory, can reduce
the average time complexity for each prime to

log(N)“+°(M vol ()0,



L-functions of hypersurfaces in a toric variety

Theorem [C-Harvey-Kedlayal]

Given a polynomial f = > cax* € Fp[xf,..., X3 ] defining nondegenerate
an/’l+'\
hypersurface V(f) in a toric variety PA one can compute

det(1 — t Frob |PH{4(X)) € Z[X]

in p1o( vol(A)9( time.

Implementations:
- Projective hypersurfaces:
C++ library: github.com/edgarcosta/controlledreduction
Sage wrapper: github.com/edgarcosta/pycontrolledreduction

- Toric hypersurfaces:
C++ library: github.com/edgarcosta/ToricControlledReduction


github.com/edgarcosta/controlledreduction
github.com/edgarcosta/pycontrolledreduction
github.com/edgarcosta/ToricControlledReduction

Naturally arise as hypersurfaces in 95 weighted projective spaces.
- smooth quartic surface in P3
X:f(x,y,z,w) =0, degf =14
- double cover of P? branched over a sextic curve P(3,1,1,1)

X:w2=f(x,y,2), degf=6



Naturally arise as hypersurfaces in 95 weighted projective spaces.
- smooth quartic surface in P3
X:f(x,y,z,w) =0, degf =14
- double cover of P? branched over a sextic curve P(3,1,1,1)
X:w? =f(x,y,2), degf =6
Pic(X*') ~ H"(X) N H3(X, Z) € H*(X,Z) ~ (—Es)’ ® U° ~ Z*?
H?(X, Q) ~ Pic(X*")g @ T(X)g
The L-functions associated to Pic(X?') are associated to Artin representations.
New and interesting L-functions arise from T(X).

If X is an hypersurface in a toric variety Pa, then rk Pic X' > rk PicXa.



Example: K3 surface in the Dwork pencil

Consider the projective quartic surface X in IP%D given by
Xyt 4+ 2wt dxyzw = 0.
For A =1and p = 2%° — 3, using the old projective code in 3h36m we compute that
()" = (1 =101 = pt)"°(1+pt)’(1 - p’t)Q(t),
where the “interesting” factor is
Q(t) = (14 pt)(1 — 1688538t + p*t?).

The polynomials Ry and R, arise from the action of Frobenius on the Picard
lattice; by a p-adic formula of de la Ossa-Kadir.

Q(t) can be interpreted as an Euler factor of Sym?E.



Example: a quartic surface in the Dwork pencil

Consider the projective quartic surface X in Pff,p given by
X"yt 4+ 2+ w4 dxyzw = 0.

For A=1and p = 20 — 3, using the toric etd-projective code in 37s 3h36m we
compute

() = (1= = pt)®(1+ pt)3(1 — p?t)(1 + pt)(1 — 1688538t + p’t?).



Example: a quartic surface in the Dwork pencil

Consider the projective quartic surface X in IP’%D given by
X"yt 4+ 2+ w4 dxyzw = 0.
For A=1and p = 20 — 3, using the toric etd-projective code in 37s 3h36m we
compute
() = (1= = pt)®(1+ pt)3(1 — p?t)(1 + pt)(1 — 1688538t + p’t?).

The defining monomials of X generate a sublattice of
index 42 in Z3, and we can work “in” that sublattice,
by using

XYz 4 M +y+z4+1=0

which has a polytope much smaller than the full
simplex (32/3 ~ 10.6 vs 2/3 ~ 0.6).




Example: a hypergeometric motive (also a K3 surface)

Consider the appropriate completion
of the toric surface over Fp, with p = 2™ — 19 given by

Xy +yt+ 72 —12xyz +1=0.

In1.3s, we compute
that the “interesting” factor of (x(t) is (up to rescaling)

pQ(t/p) = p + 20508t" — 18468t% — 2637813 — 18468t* + 20508t + pt°.

In P3 this surface is degenerate, and would have taken us 13m26s to do the same
computation with a dense model.



Example: a hypergeometric motive (also a K3 surface)

Consider the appropriate completion
of the toric surface over F, with p = 2> — 19 given by

Xy +y*+ 7 —12xyz+1=0.

In 1.3s, we compute
that the “interesting” factor of (x(t) is (up to rescaling)

pQ(t/p) = p + 20508t" — 18468t% — 2637813 — 18468t* + 20508t + pt°.

In P3 this surface is degenerate, and would have taken us 13m26s to do the same
computation with a dense model.

We can confirm the linear term with Magma:

C2F2 := HypergeometricData([6,12], [1,1,1,2,3]);
EulerFactor(C2F2, 2”10 = 3”6, 2"15-19: Degree:=1);

1 + 20508+$.1 + 0($.172)



Example: a hypergeometric motive (also a K3 surface)

Consider the appropriate completion
of the toric surface over F, with p = 2> — 19 given by

Xy +y*+ 7 —12xyz+1=0.

In 1.3s, we compute
that the “interesting” factor of (x(t) is (up to rescaling)

pQ(t/p) = p + 20508t" — 18468t% — 2637813 — 18468t* + 20508t + pt°.

In P3 this surface is degenerate, and would have taken us 13m26s to do the same
computation with a dense model.

We can compute all the a, for p < 2% in 4s

H = AmortizingHypergeometricData(cyclotomic=[[6,12]1,[1,1,1,2,31])
time aps = H.amortized_padic_H_values(1/(2"10%3%6), 2"18)

user 4.01 s, sys: 15.9 ms, total: 4.02 s



Example: a K3 surface in a non weighted projective space

Consider the surface X defined as the closure (in Pa) of the affine surface defined
by the Laurent polynomial

X+ Y +z+x2y 2+ Xy 7+ 3y
1 2\, —b,—1 3 71.

—2—xly—y 7 =Xy —xy 3z

2

The Hodge numbers of PH?(X) are (1,14, 1). For p = 2™ —19, in 2m14s we obtain
the “interesting” factor of (x(t):

pQ(t/p) = (1 —t)- (141t) - (p 4 33305t" 4 1564t° — 14296t — 11865t*
+ 5107t> + 27955t% + 25963t” + 27955t8 + 5107t°
— 11865t"° — 14296t + 1564t™ + 33305t" + pt'4).

We know of no previous algorithm that can compute (x(t) for p in this range!



Example: random dense K3 surface

X C P%p given by
—9x* — 10y — 9x%y? + 2xy® — 7y* + 6x37 + 9xX%yz — 2xy%z + 3y°z

+ 8x%2% + 6y°7% + 2xZ2° + TyZ> + 92 + 83w + xPyw — 8xy?w — 7yPw
+ 9X%2ZwW — 9xyZW + 3y2zwW — XxZ°w — 3yZ2w + 22w — X°W? — Lxyw?
— 3xzw? 4 8yzw? — 62°W? + 4xw? 4 3yw? + 4zw? — 5wt = 0
For p =2™ —19, in 38m27s, we obtain
() = (1= t)(1 = pt)(1 - p°H)Q(t)) ™
where
pQ(t/p) = (t+1)(p — 53159t + 10023t2 — 320413 + 49736t* — 56338t°
+ 43086t° — 48180t7 + 44512t — 42681t + 47794t

— 42681t + 44512t"7 — 48180t" + 43086t — 56338t"
L 20726+16 2904+ 1L 1nNno2+18 _ £2120+19 | ~+20)



Example: a quintic threefold in the Dwork pencil

Consider the threefold X in IPE;D for p = 220 — 3 given by

X34 - + X2 + XoX1X2X3Xs = O.

In 5m48s, we compute that
() = Ri(pt)*Ra(pt)*S(t)

(1= = pt)(1 = p?)(1 - p°t)
where the “interesting” factor is

S(t) = 1+ 74132440T + 748796652370pT? + 74132440p3T> 4 p°T*.

and Ry and R, are the numerators of the zeta functions of certain curves (given by
a formula of Candelas-de la Ossa-Rodriguez Villegas).

Using the old projective code, we extrapolate it would have taken us at least 120
days.



Example: a Calabi-Yau 3fold in a non weighted projective space

Let X be the closure (in Pa) of the affine threefold
XyZ2W 4+ x+y+z—-1+y 'z +x2y 1772w 3 = 0.
For p =220 —3,in 42m, we computed the “interesting” factor of (x(t)

(14 718pt + pt?)(1 + 1188466826t + 1915150034310pt> 4 1188466826p°t> 4 p°t*).


http://hep.itp.tuwien.ac.at/~kreuzer/CY/

Example: a Calabi-Yau 3fold in a non weighted projective space

Let X be the closure (in Pa) of the affine threefold
XyZ2W 4+ x+y+z—-1+y 'z +x2y 1772w 3 = 0.
For p =220 —3,in 42m, we computed the “interesting” factor of (x(t)
(14 718pt + p3t?) (1 + 1188466826t + 1915150034310pt? + 1188466826p°t> + p°t*).

Calabi-Yau threefolds can arise as hypersurfaces in:

- 7555 weighted projective spaces;
- 473,800,776 toric varieties.

See http://hep.itp.tuwien.ac.at/~kreuzer/CY/.


http://hep.itp.tuwien.ac.at/~kreuzer/CY/

