Teaching philosophy and career goals

Edgar Costa (MIT) January 23, 2023

· Grew up in Lisbon, Portugal

- · Grew up in Lisbon, Portugal
- · Problem solver

- · Grew up in Lisbon, Portugal
- · Problem solver
- That likes to share solutions: researchseminars.org

- · Grew up in Lisbon, Portugal
- Problem solver
- That likes to share solutions: researchseminars.org
- Usually involving technology github.com/edgarcosta,

- · Grew up in Lisbon, Portugal
- Problem solver
- That likes to share solutions: researchseminars.org
- Usually involving technology github.com/edgarcosta,
- · Arithmetic geometry, and explicit computations;

- · Grew up in Lisbon, Portugal
- · Problem solver
- That likes to share solutions: researchseminars.org
- Usually involving technology github.com/edgarcosta,
- · Arithmetic geometry, and explicit computations;
- · and other people

Explicit computations

I develop and implement robust algorithms for arithmetic geometry.

By making them accessible and easy to use by others, I have enabled many others to **explore** mathematics via **experimentation**.

Computational arithmetic geometry

Arithmetic geometry = algebraic geometry + number theory

For example, studying integer/rational solutions of a system of polynomials.

- · Curves: theory and computation have been developed in synchrony
- Surfaces and beyond: theory has advanced way beyond computation
 - Combinatorial explosion deters initial computations
 - Faster and big computers are not enough
 - · We need efficient algorithms and insights

My research program is focused on enabling the full triangle

I build and use the infrastructure to understand patterns in arithmetic geometry.

The motivation: Langlands' program

I provide compelling visual and computational displays for the program through the L-functions and Modular Forms Database https://www.lmfdb.org/

Plenty left to understand theoretically and explicitly. Many student projects.

Teaching

- · I have taught at various places: Portugal, NYU, Dartmouth, MIT
- In a large range of settings:
 - · Large classes: Complex analysis and differential equations: 200+ students
 - Introductory level: Calculus I: 90+ students
 - · Mid level: Probability, Differential equations, Number theory
 - Upper level: Mathematical Cryptography, Introduction to Algebraic Geometry
- My goals as a teacher are:
 - · To assist students in learning
 - · To expose students to new ways of thinking
- · My most successful tools have been:
 - Communication
 - Adaptation

Communication

Setting expectations is key for a successful class

Here are some things that worked out for me so far:

- Seek feedback
 - Send anonymous surveys
 - · Build dialogue with the students outside classroom
- · Provide active feedback
- Build a highly participatory classroom
 - · Invite students to explore with me
 - · It is okay to say "I do not know" or simply be wrong
 - · Provide tools for students to learn from their mistakes

Active feedback

One of my major goals is to help students learn.

Students learn with a lot of practice, but practice without feedback is not helpful!

Here are some ideas that I have:

- Web homework
- Khan academy
- Encourage the use of computer algebra systems
- Lean Interactive proof checker
- 2 × 2 Rubik's cube
- Encourage collaboration
- · Devise grading strategies that allow students to learn from their mistakes
 - Enable them to resubmit homework

Developing critical thinking

My other major goal is to expose students to new ways of thinking.

I try to break concepts into two steps

- · Big picture
- Formalization

Recall: Theorem 3.2.3

Theorem 3.2.3

Let $y_1(t)$ and $y_2(t)$ be two **solutions** of the homogeneous ODE

$$y'' + p(t)y' + q(t)y = 0,$$

that are defined at t_0 .

If $W(y_1, y_2)(t_0) \neq 0$, then **every** solution to the initial value problem

$$y(t_0) = y_0, \quad y'(t_0) = y'_0$$

can solved in the form

$$y(t) = C_1 y_1(t) + C_2 y_2(t).$$

What is the meaning of $W(y_1, y_2)(t_0) \neq 0$? What is the key idea?

Fundamental Solution set

Definition

Assume that p(t) and q(t) are **continuous** in (α, β) .

Further, assume that $y_1(t)$ and $y_2(t)$ are two solutions in (α, β) for

$$y'' + p(t)y' + q(t)y = 0.$$

If $W(y_1, y_2)(t_0) \neq 0$ for some $t_0 \in (\alpha, \beta)$ then $\{y_1(t), y_2(t)\}$ is called the fundamental solution set of the ODE on the interval (α, β) .

Q: Why do we call them fundamental?

A: Because every solution in (α, β) can be written as $y(t) = C_1y_1(t) + C_2y_2(t)$ **Even** if the initial conditions are given at $t_1 \neq t_0$, with $t_1 \in (\alpha, \beta)$

Developing critical thinking

My other major goal is to expose students to new ways of thinking.

I try to break concepts into two steps

- · Big picture
- Formalization

I encourage my students to be curious and skeptical.

- · What are the implications?
- · What makes it all work?
- · Where are we headed?

Many times, the path to the right answer is more important than the answer itself.